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Abstract

Task allocation is an important aspect of many multi-robot systems. The features and com-
plexity of multi-robot task allocation (MRTA) problems are dictated by the requirements of
the particular domain under consideration. These problems can range from those involving in-
stantaneous distribution of simple, independent tasks among members of a homogenous team,
to those requiring the time-extended scheduling of complex interrelated multi-step tasks for a
members of a heterogenous team related by several constraints. The existing widely-used tax-
onomy for task allocation in multi-robot systems addresses only problems with independent
tasks and does not deal with problems with interrelated utilities and constraints. A survey of re-
cent work in multi-robot task allocation reveals that this is a significant deficiency with respect
to realistic multi-robot task allocation problems. Thus, in this paper, we present a new, com-
prehensive taxonomy, iTax, that explicitly takes into consideration the issues of interrelated
utilities and constraints. Our taxonomy maps categories of MRTA problems to existing math-
ematical models from combinatorial optimization and operations research, and hence draws
important parallels between robotics and these fields.

1 Introduction
Task allocation in a multi-robot system is the problem of determining which robots should execute
which tasks in order to achieve the overall system goals. Its purpose is coordinated team behaviour.
In some systems, such as some biologically inspired robotic systems, coordinated team behavior
emerges as a result of local interactions between members of a team and with the environment.
This is referred to as implicit or emergent (Gerkey, 2003) coordination. We are interested instead
in explicit or intentional (Parker, 1998) cooperation in which tasks are explicitly assigned to a
robot or sub-team of robots, a problem described as multi-robot task allocation (MRTA).

Multi-robot task allocation problems of various forms are the subject of a growing body of re-
search. To help organize this work and identify the theoretical foundations of what they describe as
largely ad hoc approaches, Gerkey and Matarić proposed a taxonomy for MRTA problems (Gerkey
& Matarić, 2004). This taxonomy, which is now widely used, provides a common vocabulary for
describing MRTA problems. It is, however, limited in scope. It is described by its authors as re-
stricted to systems with independent tasks, and as such excludes a large collection of problems in
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the widely growing body of multi-robot coordination work in which there are interrelated task util-
ities and constraints. For example, the basic multi-robot routing problem (Lagoudakis, Markakis,
Kempe, Keskinocak, Kleywegt, Koenig, Tovey, Meyerson & Jain, 2005) in which a team of robots
visits a set of locations with routes that optimize criteria such as travel distance or time, is outside
the space covered by Gerkey and Matarić’s taxonomy. Also excluded are many more complicated
problems involving constraints between tasks and/or robots.

In this paper, we propose a more complete taxonomy, which we name iTax, that explicitly han-
dles the issues of interrelated utilities and constraints and as such is applicable to a much larger
space of important task allocation problems. In describing each class in our taxonomy, we give
examples of existing work in the multi-robot task allocation literature addressing problems in that
class. The descriptions also identify well-known problems and mathematical models from the
combinatorial optimization and operations research literature that exemplify the problem class.
The goal in doing this is to point out relationships between similar problems addressed in different
fields. This serves to identify mathematical models that apply to these problems and thus could
potentially be useful in the analysis of solution approaches in robotics. Thus, the key contributions
of this paper are (i) a comprehensive taxonomy of multi-robot task allocation problems that high-
lights key issues that differentiate these problems into difficulty classes, and (ii) an identification
of relevant mathematical models, where they exist, exemplifying each problem class.

In this work, we are concerned with teams that include robots but may optionally include
humans or non-robotic vehicles. We consider these collectively to be embodied mobile agents,
but shall simply refer to them as agents. For consistency, we shall not, however, change Gerkey
and Matarić’s acronyms referring to single-robot (SR) tasks and multi-robot (MR) tasks, with the
understanding that the term robot in this context generalizes to the embodied mobile agents under
consideration in this work.

The rest of this paper is organized as follows. We will first summarize, in section 2, the existing
taxonomy proposed by Gerkey and Matarić. Section 3 presents relevant concepts and terminology
for the new taxonomy, the high-level features of which are presented in Section 4. Section 5 gives
detailed descriptions of each class in the taxonomy. Finally, Section 6 summarizes the paper.

2 Background: Gerkey and Matarić’s Taxonomy
Gerkey and Matarić categorize multi-robot task allocation problems along three axes. The first
axis, single-task robots (ST) versus multi-task robots (MT), distinguishes between problems in
which each robot can execute only one task at a time and problems in which some robots can
execute multiple tasks simultaneously. The second axis, single-robot tasks (SR) versus multi-
robot tasks (MR), distinguishes between problems in which each task requires exactly one robot to
achieve it and problems in which some tasks may require multiple robots. The third axis, instan-
taneous assignment (IA) versus time-extended assignment (TA), distinguishes between problems
concerned with instantaneous allocation of tasks to robots with no planning for future allocations
and problems concerned with both current and future allocations, meaning that each robot is al-
located several tasks which must be executed according to a given schedule. This taxonomy is
illustrated in Figure 1.
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Figure 1: Visual representation of the three axes of Gerkey and Matarić’s taxonomy

In presenting their taxonomy for multi-robot task allocation problems, Gerkey and Matarić
point out that the ST-SR-IA (single-task robots, single-robot tasks, instantaneous assignment)
problem is an instance of the optimal assignment problem in combinatorial optimization and is
the only problem in this space that can be solved in polynomial time. The remaining problems are
all strongly NP-hard. They describe the ST-SR-TA (single-task robots, single-robot tasks, time-
extended assignment) problem, which involves determining a schedule of tasks for each robot,
as an instance of a machine scheduling problem. The ST-MR-IA (single-task robots, multi-robot
tasks, instantaneous assignment) problem is significantly harder and is also referred to as coali-
tion formation. Expressed as the problem of dividing or partitioning the set of robots into non-
overlapping sub-teams to perform the given tasks, this problem is mathematically equivalent to
the well-known set-partitioning problem in combinatorial optimization. They explain that the
less-common MT-SR-IA (multi-task robots, single-robot tasks, instantaneous assignment) prob-
lem is mathematically equivalent to the ST-MR-IA problem, with the roles of tasks and robots
reversed. The ST-MR-TA (single-task robots, multi-robot tasks, time-extended assignment) prob-
lem involves both coalition-formation and scheduling. It is mathematically equivalent to the less
common MT-SR-TA (multi-task robots, single-robot tasks, time-extended assignment) problem.
In the MT-MR-IA (multi-task robots, multi-robot tasks, instantaneous assignment) problem, the
goal is to try to compute a coalition of robots to perform each task, where a given robot may be
assigned to more than one coalition (that is, a robot may work on more than one task). This prob-
lem can be expressed as an instance of the set-covering problem in combinatorial optimization.
It is distinguished from the set-partitioning problem in that the subsets of robots need not be dis-
joint. Finally, they assert that the MT-MR-TA (multi-task robots, multi-robot tasks, time-extended
assignment) problem is an extremely difficult problem that can be thought of as an instance of
a scheduling problem with multiprocessor tasks and multipurpose machines. (We will, however,
explain in Section 5.3 why we disagree with this analogy).

Gerkey and Matarić explain that a key limitation of their taxonomy is that it does not capture
problems with interrelated utilities and task constraints. For example, notably excluded are multi-
robot routing problems which can be modeled as multiple traveling salesman problems (m-TSP),
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in which the robots have to visit multiple locations to perform spatially distributed tasks, and the
utility function is related to routing costs. In such domains, there are synergies between tasks that
are close together, and the total utility to a robot that performs these clustered tasks is not equal to
the sum of its utilities for performing them individually. Such problems are common in robotics
and so it is essential to develop a taxonomy that includes them. Before presenting the new task
allocation taxonomy, we discuss several relevant concepts in the next section.

3 Relevant Concepts and Terminology

3.1 Tasks and Task Decomposition
We distinguish between various types of tasks that can be performed by agents. Intuitively, some
tasks comprise a single action that can be performed by a single agent and these are described as
elemental or atomic tasks. Other tasks can be broken up or decomposed into multiple steps or
subtasks, and these are referred to as compound tasks, provided that there is a single fixed way
of decomposing the task into subtasks. Different parts of a compound task may be allocated to
different agents. Alternatively, the different parts of a compound task may need to be performed
by the same agent, in which case it is described as a decomposable simple task. Lastly, a complex
task is one for which there are multiple possible ways of decomposing the task, and which can be
allocated to multiple agents. These task types are illustrated in Figure 2. More formally, we adopt
the following terminology proposed by Zlot (Zlot, 2006):

Decomposition and Decomposability: A task t is decomposable if it can be represented as
a set of subtasks σt for which satisfying some specified combination (ρt) of subtasks in
σt satisfies t. The combination of subtasks that satisfy t can be represented by a set of
relationships ρ, that may include constraints between subtasks or rules about which or
how many subtasks are required. The pair (σt,ρt) is also called a decomposition of t.
The term decomposition can also be used to refer to the process of decomposing a task.

Multiple Decomposability: A task t is multiply decomposable if there is more than one pos-
sible decomposition of t.

Elemental Task: An elemental (or atomic) task is a task that is not decomposable.

Decomposable Simple Task: A decomposable simple task is a task that can be decomposed
into elemental or decomposable simple subtasks, provided that there exists no decompo-
sition of the task that is multi[agent]-allocatable.

Simple Task: A simple task is either an elemental task or a decomposable simple task.

Compound Task: A compound task t is a task that can be decomposed into a set of simple or
compound subtasks with the requirement that there is exactly one fixed full decomposi-
tion for t (i.e., a compound task may not have any multiply decomposable tasks at any
decomposition step).

Complex Task: A complex task is a multiply decomposable task for which there exists at least
one decomposition that is a set of multi[agent]-allocatable subtasks. Each subtask in a
complex task’s decomposition may be simple, compound, or complex.
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Figure 2: Illustration of Zlot’s task types. Dotted circles indicate potential valid allocations of
tasks to robots. Shaded circles represent elemental tasks while shaded rectangles represent decom-
posable tasks, whose decomposition into elemental tasks is illustrated by a tree-like structure. The
superimposed trees in the rightmost figure illustrates multiple possible ways of decomposing the
example complex task.

From these definitions, it can be seen that a key difference between compound and complex
tasks is that the optimal decomposition for compound tasks can be determined prior to task allo-
cation, whereas for complex tasks, it is not known prior to task allocation which of the possible
decompositions is optimal. Thus, a complete algorithm for allocating compound tasks can opti-
mally decompose these into simple tasks prior to task allocation whereas a complete algorithm for
allocating complex tasks would need to explore the various possible task decompositions concur-
rently with task allocation. In addition to answering the basic task allocation question of “who
does what?”, an algorithm for allocating complex tasks also needs to answer the question “which
simple tasks should be executed (or which decomposition should be used)?”. The space of possible
allocations for a multi-agent task allocation problem with simple or compound tasks is exponential
in the number of agents and tasks. The space of possible allocations for the same problem with
complex tasks is exponentially larger than this (Zlot, 2006).

3.2 Constraints
Constraints in a task allocation problem are potentially arbitrary functions that restrict the space of
feasible solutions to the problem. For example, capability constraints may define which robots are
capable of performing which tasks. Capacity constraints can define how many tasks a given robot
can perform at a time. Simultaneity constraints can specify that two tasks must be performed at the
same time, while non-overlapping constraints may specify that they must not be performed at the
same time, and precedence constraints may specify that one task must be performed before another.
In problems where tasks have a choice of locations at which they can be performed, proximity
constraints may specify that two tasks must be performed less (or greater) than a specified distance
from each other.
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3.3 Relationship Between Task Decomposition and Inter-Task Constraints
For compound tasks, task allocation can be preceded by task decomposition, during which a com-
pound task is broken up into several simple tasks. To be equivalent to the original compound task,
these simple tasks might need to be related by constraints such as simultaneity or precedence con-
straints. The simple tasks might be allocated to different robots, but the constraints between the
tasks ensure that the robots work together appropriately. Thus, there is a close relationship between
the issue of task decomposition and the issue of inter-task constraints: A problem with indepen-
dent compound tasks, unrelated by constraints, may be equivalent to a problem with simple tasks
related by inter-task constraints. Thus, some problems can be expressed in multiple ways.

Although some problems might explicitly deal with complex tasks, as in Zlot’s work (Zlot,
2006), there are other problems for which complex tasks might exist implicitly. Consider a problem
with a set of simple tasks that are related by constraints, such that there is a choice of which
constraints should be satisfied. For example, task A may need to be preceded either by tasks B1

and B2 or by tasks C1,C2,and C3. Each of these potential pre-requisite tasks may be performed by
a different agent. In a process opposite to task decomposition, we can compose these simple tasks
into a complex task,A, with two possible decompositions. One decomposition comprises tasks B1

and B2 followed by task A, and the other decomposition comprises tasks C1,C2,and C3, followed
by task A. Thus, although the complex task was not explicitly defined in the problem definition,
we consider such a problem to involve complex task allocation.

3.4 Utility
As an optimization problem, task allocation seeks to determine a feasible assignment of tasks to
agents that optimizes some objective, which can be described as a utility function. Here, we adapt
Gerkey and Matarić’s (Gerkey & Matarić, 2004) definition of the utility of an agent for a task to
allow both positive and negative utilities:

Given a robot r and a task t, if r is capable of executing t, then one can define, on
some standardized scale, Qrt and Crt as the quality and cost, respectively, expected to
result from the execution of t by r. This results in a combined, utility measure:

Urt =

{
Qrt − Crt if r is capable of executing t
−∞ otherwise

For some problems, an agent’s utility for performing a task is independent of its utility for
performing any other task. In other problems, this is not true. Consider, for example, a problem
where there are a number of items or “treasures” scattered in the environment, and there are a
number of robots at different starting locations in the environment. The team of robots is tasked
with collecting each treasure in the environment and bringing it back to the starting location of
the robot that picks up the treasure. Suppose the robots are identical and can each carry one
treasure at a time. For this scenario we could define Qrt as a fixed reward for each treasure that
is picked up, and Crt as a cost proportional to the distance from a robot’s starting location to
a task location and back again. Because a robot can carry only one treasure at a time, it must
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return to its starting location after every pick-up. Thus, the utility of the robot for performing a
given task is independent of all other agent-task utilities. Taking all the agent-task utilities into
consideration, the global optimal solution to this task allocation problem would allocate each task
to its closest robot. Suppose, however, that each robot is capable of carrying multiple treasures at
a time. Suppose further that the distance between two particular treasures, T1 and T2, is smaller
than the distance from either treasure to the starting location of robot R1. In this case, the robot
R1’s cost to pick up T1 will be less if it is already assigned to pick up T2 than if it is not. This is
because it can travel directly from the location of T2 to the location of T1. Thus, the utilities of R1

for tasks T1 and T2 are not independent.
To formalize this notion of interrelated utilities, we can generalize the above definition of utility

to encompass not only single agents and tasks, but also subsets of agents and tasks. LetR represent
a subset of agents in the team, such that |R| ≥ 1, and similarly T represent a subset of tasks in
the problem such that |T | ≥ 1. We can then define a utility measure for a subteam of agents and a
subset of tasks:

URT =

{
QRT − CRT if subteamR is capable of executing task subset T
−∞ otherwise (1)

Furthermore, for each subteam of agents,R and subset of tasks, T , we can implicitly define an
effective utility, eURT

rt , for an agent r ∈ R and task t ∈ T such that:

URT =
∑
r∈R

∑
t∈T

eURT
rt (2)

We can then indicate that for a problem with independent utilities,

URT =
∑
r∈R

∑
t∈T

Urt or eURT
rt = Urt (3)

And for a problem with interrelated utilities,

URT 6=
∑
r∈R

∑
t∈T

Urt or eURT
rt 6= Urt (4)

If the subset of agents and the subset of tasks have a synergistic relationship, then:

URT >
∑
r∈R

∑
t∈T

Urt or eURT
rt > Urt (5)

3.5 Relationship between Utilities and Constraints
Utilities can be thought of as real-valued functions of relevant problem features, whereas con-
straints are binary-valued functions of relevant problem features. They are thus related, although
not identical concepts. Interrelated utilities and constraints both have an impact on the degree
of interdependence between the agents as well as tasks in a problem. Our proposed taxonomy
explicitly considers this degree of interdependence.
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4 iTax: A Taxonomy Addressing Interrelated Utilities
and Constraints

We propose a new MRTA taxonomy called iTax, which is based on the recognition that a key
distinguishing factor between different types of MRTA problems is the degree of interdependence
of agent-task utilities in the problem. In fact, problem features such as whether or not agents
can execute more than one task at a time (ST versus MT agents) and whether tasks require one
agent or multiple agents (SR versus MR tasks) can translate into a degree of interdependence of
agent-task utilities that is a strong determining factor of problem difficulty. We thus propose a
two-level taxonomy in which the first level comprises a single dimension defining the degree of
interdependence of agent-task utilities. The second level provides further descriptive information
about the problem configuration, utilizing Gerkey and Matarić’s taxonomy.

We represent the degree of interdependence with a single categorical variable with four possible
values, listed below and illustrated in Figure 3.

• No Dependencies (ND): These are task allocation problems with simple or compound tasks
that have independent agent-task utilities. That is, the effective utility of an agent for a task
does not depend on any other tasks or agents in the system.

• In-Schedule Dependencies (ID): These are task allocation problems with simple or com-
pound tasks for which the agent-task utilities have intra-schedule dependencies. That is, the
effective utility of an agent for a task depends on what other tasks that agent is performing.
Constraints may exist between tasks on a single agent’s schedule, or might affect the overall
schedule of the agent.

• Cross-Schedule Dependencies (XD): These are task allocation problems with simple or
compound tasks for which the agent-task utilities have inter-schedule dependencies (in ad-
dition to any in-schedule dependencies). That is, the effective utility of an agent for a task
depends not only on its own schedule but also on the schedules of other agents in the system.
For this class, allowable dependencies are “simple” dependencies in that the task decomposi-
tion can be optimally pre-determined prior to task allocation. Constraints may exist between
the schedules of different agents.

• Complex Dependencies (CD): These are task allocation problems for which the agent-task
utilities have inter-schedule dependencies for complex tasks (in addition to any in-schedule
and cross-schedule dependencies for simple or compound tasks). That is, the effective utility
of an agent for a task depends on the schedules of other agents in the system in a manner that
is determined by the particular task decomposition that is ultimately chosen. Thus, the opti-
mal task decomposition cannot be decided prior to task allocation, but must be determined
concurrently with task allocation. Furthermore, constraints may exist between the schedules
of different agents.
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Figure 3: Examples illustrating the four high-level categories of the new taxonomy. Shaded circles
represent tasks and solid lines represent agent routes. Arrows between tasks indicate constraints.
The superimposed routes in the rightmost figure illustrate multiple possible task decompositions.

Figure 4 illustrates the overall two-level taxonomy, which is described in detail in the next
section. Level 1 of this taxonomy comprises the four categories above. For a finer-grained clas-
sification, this Level 1 designation can be optionally followed, in square braces, by a Level 2
designation given by Gerkey and Matarić’s taxonomy. For example the label XD [ST-SR-TA]
refers to the category of problems with cross-schedule dependencies (XD) and for which we need
to compute a time-extended assignment (TA) of single-agent tasks (SR) to single-task agents (ST).
Figure 4 illustrates that the proposed taxonomy does not contain categories corresponding to the
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Figure 4: iTax: A two-level task allocation taxonomy
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full cross-product between the Level 1 and Level 2 designations. Rather, some of the potential
subcategories are not meaningful and thus not included in the new taxonomy. Specifically, as elab-
orated in the discussion below, although the original Gerkey and Matarić taxonomy was meant
for independent tasks and utilities, we can see that several of the original categories do in fact
represent problems with interrelated utilities, as defined in section 3.4. Indeed, in the category
of problems with completely independent agent-task utilities according to our definition (the ND
class), the only subcategories with meaningful problems are the ST-SR-IA and ST-SR-TA subcat-
egories. All problems with multi-task robots (MT) and/or multi-robot tasks (MR) have some form
of interrelated utilities and so are included in one or more of the ID, XD and CD classes.

5 Details of the Proposed Taxonomy
We now elaborate each class in the taxonomy, highlighting relevant mathematical models as well
as example MRTA solution approaches.

5.1 No Dependencies (ND)
For problems in the ND class, the effective utility of an agent for a task depends only on the agent
and the task. Any constraints in the problem can involve a single agent, a single task, or a single
agent-task pair. A common example in this class is a problem in which the utility function is based
on agent capabilities or proximity to a task. All problems in this class have single-task agents (ST)
and single-agent tasks (SR). Problems with multi-task agents (MT) cannot be included in this class
because it is assumed that, even if an agent can execute multiple tasks at once, its capabilities and
resources will place limits on how many tasks, or which tasks, it can execute simultaneously. Thus,
the agent’s effective utility for a given task will depend on what other tasks are also assigned to
it. There are, as such, in-schedule dependencies. Similarly, problems with multi-agent tasks (MR)
also cannot be included in this class because if a task requires multiple agents, then the effective
utility of a given agent for that task depends on what other agents are assigned to it. MR tasks thus
give rise to cross-schedule dependencies.

5.1.1 ND [ST-SR-IA]

Mathematical Model
The ND [ST-SR-IA] subcategory of problems captures the one-to-one assignment of indepen-

dent single-agent tasks to independent single-task agents. As previously described (Gerkey &
Matarić, 2004), it can be represented by the linear assignment problem (Votaw & Orden, 1952)
from the combinatorial optimization literature:

Maximize ∑
i∈N

∑
j∈M

uijxij (6)
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Subject to: ∑
i∈N

xij = 1 ∀i ∈ N∑
j∈M

xij = 1 ∀j ∈M

xij ∈ {0, 1}

(7)

where N is the set of agents, and M is the set of tasks.

The linear assignment problem can be solved in polynomial time with algorithms such as the
Hungarian algorithm (Kuhn, 1955). For a feasible solution to this problem, the number of agents,
|N |must be equal to the number of tasks, |M |. An imbalance in the number of robots and tasks can
be fixed by including “dummy” agents or tasks as needed. These dummy agents (or tasks) must
have very low utility values with respect to all tasks (or agents) in the system. Furthermore, the
utility values, uij , can be defined so as to accommodate agent-task constraints such as capability
constraints. For example, if an agent is not capable of performing a task, it can be assigned a large
negative utility for that task.

MRTA Solution Approaches
Several approaches to multi-robot task allocation address the ND [ST-SR-IA] problem. A few

examples are work by Vail and Veloso using potential fields (Vail & Veloso, 2003), Gerkey and
Matarić using auction methods (Gerkey & Matarić, 2002), and Simmons et al also using acu-
tions (Simmons, Apfelbaum, Burgard, Fox, Moors, Thrun & Younes, 2000). Gerkey and Matarić
(Gerkey & Matarić, 2004) present a detailed discussion of ST-SR-IA problems with no dependen-
cies, so we will not elaborate further on this class.

5.1.2 ND [ST-SR-TA]

In the time extended version of the problem, each robot can be assigned more than one task, and
a time-extended schedule of tasks must be built for each robot. This may be because there are
more known tasks than robots, or simply to allow solutions where some robots perform multiple
tasks while others do nothing. Because there are no in-schedule dependencies, the order in which
a given agent performs its assigned tasks does not affect the overall utility or objective function.
The example discussed earlier in which robots need to pick up several treasures, returning to their
starting locations after picking up each item, assuming there is no time deadline for task execution,
falls into the ND [ST-SR-TA] category. The version of the problem in which the robots can carry
multiple items at a time and so need not return to their starting locations after picking up each item,
does not fall in this category because of the existence of in-schedule dependencies.

Mathematical Model
Because the agent-task utilities are independent, the ND [ST-SR-TA] problem can be reformu-

lated as a linear assignment problem and as such can also be solved in polynomial time. For a
trivial, albeit inefficient, reformulation, create (M − 1) additional “clone” agents for each agent
in N , so that the total number of agents is NM . The agent-task utilities for each clone of agent i
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are equal to those for agent i. Then, create as many dummy tasks as are needed to ensure that the
number of tasks is equal to the total number of agents (both real agents and clones). The utility of
any agent for any of the dummy tasks is set very low (e.g. a large negative number). When this
reformulated linear assignment problem is solved, any task that is assigned to a clone of agent i
can be considered as assigned to agent i. In the solution, dummy tasks assigned to an agent are
ignored, and thus each real agent i can end up with as few as 0 or as many as M tasks.

It is important to note a difference between our description of this class of problems and
that in Gerkey and Matarić’s original taxonomy. They describe the ST-SR-TA problem as an in-
stance of the NP-hard class of scheduling problems, represented in standard scheduling notation as
R||
∑
wjCj , in which “the robots execute tasks in parallel (R) and the optimization criterion is the

weighted sum of execution costs (
∑
wjCj)” (Gerkey & Matarić, 2004). We point out that in the

scheduling literature, the objective function
∑
wjCj actually represents the weighted sum of task

completion (or finishing) times (Brucker, 2001) and not execution costs. Since the task completion
time depends on what tasks are scheduled earlier on the same machine, the fact that the objective
or utility function depends on task completion times implies that this scheduling problem actually
has in-schedule dependencies, and as such falls in the ID class, discussed in the next section.

5.2 In-Schedule Dependencies (ID)
For the class of problems with in-schedule dependencies (ID), the effective utility of an agent for a
task depends on what other tasks are assigned to the agent. This commonly arises in time-extended
task allocation problems in which utility functions involve routing costs or task completion times.
In these domains, the utility of an agent for a task depends on tasks that occur earlier in the agent’s
schedule. In-schedule dependencies also arise in cases where a robot is capable of executing more
than one task at a time. Constraints on an agent’s resources or capabilities might limit the number
of tasks the agent can perform at a time, and might affect the execution quality or time for tasks it
executes concurrently. For example, a robot cannot simultaneously travel to point A on one side of
a room and point B on the opposite side of the room (assuming that the robot is small compared to
the size of the room). It may however, be able to monitor a location that falls within its camera’s
field of view, while simultaneously navigating to point A.

The ID class of problems does not include any problems of the single-task agent, single-agent
task, instantaneous assignment (ST-SR-IA) subclass because by definition, agents in this subclass
cannot be assigned more than one task and so cannot have in-schedule dependencies. Furthermore,
any problems that involve multi-agent tasks, although they might have in-schedule dependencies,
by definition also have cross-schedule dependencies and so are not included in the ID class. Thus,
the ID class has only three subcategories: ST-SR-TA, MT-SR-IA, and MT-SR-TA. Despite not
having many subcategories, this is an important class of problems that captures many realistic
multi-robot task allocation scenarios.

There are several well-known combinatorial optimization problems that exemplify the ID class.
These include the generalized assignment problem (Shmoys & Tardos, 1993; Savelsbergh, 1997),
several machine scheduling problems (Brucker, 2001), the Multiple Traveling Salesman Problem
(m-TSP) (Bektas, 2006) and several forms of the vehicle routing problem (VRP) (Toth & Vigo,
2001). While the linear assignment problem that exemplifies the no-dependencies (ND) class can
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be solved in polynomial time, these exemplifying problems for the ID class are all strongly NP-
hard (with the exception of some special cases of machine scheduling problems, but these special
cases generally do not correspond well to general multi-robot task allocation problems). Thus, the
ID class of problems represents a fundamentally more difficult class than the ND class.

5.2.1 ID [ST-SR-TA]

Mathematical Models
Consider our treasure gathering scenario in which the robots can carry one treasure at a time

and so must return to their starting location after picking up each treasure. Suppose further that
each robot has a time limit within which it must complete its tasks. The execution time for a given
task depends on the robot’s speed and the distance of the treasure from the robot’s location. We
can thus specify an execution time for each (robot, task) combination. Whether or not a given
robot can execute a given task depends on its time limit and what other tasks are in its schedule.
This is one of the simplest cases of in-schedule dependencies, and it can be represented by the
generalized assignment problem (Shmoys & Tardos, 1993), interpreting the side constraints in the
mathematical formulation of this problem as time constraints.

In the generalized assignment problem, each robot can be assigned more than one task, but a
side constraint, often interpreted as a “budget” or time constraint, limits the number of tasks that it
can be assigned. Representing the utility of a robot i ∈ N for a task j ∈ M as uij , the execution
time for task j by robot i as tij , and the time limit for robot i as Ti, we can express the generalized
assignment problem as follows:

Maximize ∑
i∈N

∑
j∈M

uijxij (8)

Subject to: ∑
j∈M

tijxij ≤ Ti ∀i ∈ N∑
i∈N

xij ≤ 1 ∀j ∈M

xij ∈ {0, 1} ∀i ∈ N,∀j ∈M

(9)

Suppose our treasure gathering robots were not required to pick up the treasure to bring home,
but instead simply had to visit the treasure location, take a picture of it, and transmit this picture to
a supervisor. The robots no longer have to return to the start location after visiting each treasure,
but can move from one treasure location directly to another. If the utility function is related to
routing costs, this is another example of a problem with in-schedule dependencies. Assuming
that it is possible to travel from each task location to every other task location (a fully connected
graph), it can be represented by a variant of the Multiple Traveling Salesman Problem (m-TSP)
(Bektas, 2006). The standard well-known Traveling Salesman Problem (TSP) finds a minimum-
cost tour for a salesman residing in one city to visit all specified cities once before returning home
without going through any city twice. The m-TSP generalizes the TSP to multiple salesmen who
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collectively must visit all the cities such that each city is visited exactly once. With the salesmen all
starting out at different locations, this is also called the Multi-Depot Multiple Traveling Salesman
Problem. Variants of the TSP and the m-TSP that involve finding paths rather than tours are
sometimes called the Traveling Salesman Path Problem (Lam & Newman, 2008) and the Multiple
Traveling Salesman Path Problem (Zlot, 2006) respectively. It is these “path” variants that are
often more relevant to robotics routing problems.

If our treasure-gathering robots were again required to pick up the treasures, but this time had
a finite capacity such that they could carry more than one treasure at a time, we could represent
this task allocation problem as a Capacitated Vehicle Routing Problem (Toth & Vigo, 2001), or
more specifically a Multi-Depot Capacitated Vehicle Routing Problem, since each robot starts
out at a different location. Vehicle routing problems (VRPs) are a general problem class that
address the transportation of passengers or the distribution of goods between depots and final users
(Toth & Vigo, 2001). Solving a vehicle routing problem involves determining a set of routes,
each performed by a single vehicle that starts and ends at its own depot, such that all customer
requirements are met, all operational constraints are satisfied, and the global transportation cost
is minimized. In general, problems of this class can be expressed as integer or mixed integer
programming problems that involve the minimization of some objective function subject to several
constraints. In the most basic version of the vehicle routing problem, known as the capacitated
vehicle routing problem (CVRP), all vehicles originate from the same depot and all customer
requests or demands are known in advance. The only constraints imposed are vehicle capacity
constraints ensuring that a vehicle does not hold more passengers or goods than it can carry.

One final example of a mathematical model from combinatorial optimization that can represent
some problems in the ID [ST-SR-TA] class is the problem mentioned earlier of scheduling tasks
on “unrelated” (i.e. heterogeneous) machines to minimize the weighted sum of completion times.
This problem is represented by R||

∑
wjCj in the standard scheduling classification scheme in

which α|β|γ represents a scheduling problem whose machine environment is represented by α,
job characteristics are represented by β, and optimality criterion is represented by γ (Brucker,
2001). In this example, the machine environment is R, which is the notation for unrelated parallel
machines. The job characteristics field is empty, and the optimality criterion is represented by
the objective function

∑
wjCj . Note that mathematical models for machine scheduling problems

often do not apply directly to task allocation problems for embodied mobile agents because they
do not account for the travel time required for spatially distributed tasks. Accounting for this travel
time would be equivalent to specifying non-uniform task-order-dependent set-up times before each
task, which significantly complicates the scheduling problem.

MRTA Solution Approaches
There are several examples of work in the multi-robot coordination literature that address the

ID [ST-SR-TA] class of problems. Some approaches, particularly earlier approaches, leverage cen-
tralized solution methods developed for solving the TSP and m-TSP. For example, the GRAMMPS
mission planner (Brummit & Stentz, 1998) uses exhaustive and randomized search (simulated an-
nealing) to plan for a mission that is defined in terms of TSP and m-TSP components.

Melvin et al (Melvin, Keskinocak, Koenig, Tovey & Ozkaya, 2007) address a multi-robot
routing problem with rewards and disjoint time-windows. For the special case with homogenous
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robots and singleton time windows, they convert the problem to a minimum-cost network flow
problem which can be efficiently solved. For the more general case, they develop a mixed integer
mathemetical model that bears some resemblance to models for the m-TSP. They do not solve
this model directly, however, but instead develop an auction-based approach which uses repeated
single-item auctions to allocate targets to agents.

Auction or market-based approaches have become widely-used for solving multi-robot task
allocation problems since their distributed nature are particularly suited to distributed robot teams.
TraderBots (Dias, 2004) is a market-based architecture for multi-robot coordination in which
agents hold auctions and submit bids to determine task allocation. The system enables computa-
tion of a time-extended allocation of tasks to agents since each agent internally maintains a current
schedule of tasks that it is committed to, and computes bids with respect to this schedule. The
system thus explicitly takes into consideration in-schedule dependencies. Agents also periodically
try to auction tasks in their current schedules that they have not begun executing. This allows the
solution process to escape some local minima and find good solutions. TraderBots is designed
to be a flexible architecture which allows the solution of several types of problems through cus-
tomizable bidding functions and auction mechanisms such as clustered auctions and auction trees.
It provides no optimality bounds or guarantees. The proof-of-concept problem addressed by Dias
(Dias, 2004) was a distributed sensing problem in which the team had to visit a collection of points.
This problem is essentially a Multi-depot Multiple Traveling Salesman Path Problem as described
earlier. In response to task auctions, agents bid their incremental cost to insert the new task into
their current schedule, plus a percentage of their expected profit for executing the task, where that
percentage could be zero.

Berhault et al (Berhault, Huang, Keskinocak, Koenig, Elmaghraby, Griffin & Kleywegt, 2003)
address a similar exploration task in which members of the robotic team need to visit a number
of predetermined target points in the environment. They also use a market mechanism, and their
approach to handling in-schedule dependencies is to use combinatorial auctions, rather than single-
item auctions. In combinatorial auctions, multiple tasks are auctioned at a time, and the agents bid
on bundles of tasks. In their work, Berhault et al experiment with several bidding strategies, all of
which explicitly consider in-schedule dependencies by bidding an agent’s surplus, that is overall
profit minus overall cost, for each bundle.

For solving the same ID [ST-SR-TA] multi-agent routing problem, Koenig et al (Koenig, Tovey,
Zheng & Sungur, 2007) find a balance between single item auctions and combinatorial auctions by
designing what they describe as sequential bundle-bid single-sale auctions. In this approach, during
each auction round, all agents bid on selected nonempty bundles up to a specified maximum bundle
size, k. The auctioneer then assigns exactly k additional tasks to agents, either to the same or to
different agents. Auction rounds are repeated until all tasks have been allocated. The contribution
of their approach is a reduction in the complexity of the winner determination algorithm, relative
to that for combinatorial auctions.

Lagoudakis et al (Lagoudakis, Markakis, Kempe, Keskinocak, Kleywegt, Koenig, Tovey, Mey-
erson & Jain, 2005) also address market-based approaches to multi-robot routing, this time with a
focus on contributing a theoretical analysis of the performance of auction methods for solving this
problem. They study three possible objective functions: minimizing the sum of robot path costs
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(MINISUM), minimizing the maximum robot path cost (MINIMAX), and minimizing the average
robot path cost (MINIAVE). They determine appropriate bidding rules for each of these objective
functions and prove approximation bounds for using auction methods to solve the problem.

The approaches described above do not represent an exhaustive list, but a sample of the ap-
proaches taken in the multi-robot coordination literature. Many variations of these approaches and
algorithms have been explored.

5.2.2 ID [MT-SR-IA]

The ID [MT-SR-IA] subcategory represents problems for which there is an instantaneous allocation
of a set of tasks to a robot, which must then execute these tasks concurrently. That is, each task
requires only one agent but an agent can potentially perform more than one task at a time. Problems
in this subclass can theoretically be represented by the Generalized Assignment Problem, this time
interpreting the side constraints as capacity constraints (Savelsbergh, 1997) (instead of as time
constraints as we did in the previous sub-section). The capacity constraints represent the fact that
no realistic embodied agent can execute an unlimited number of tasks at once.

We know of no MRTA work that falls in this category, but include this category for complete-
ness. We will later see some work that includes multi-task robots (MT) in the context of coalition
formation or multi-robot tasks (MR).

5.2.3 ID [MT-SR-TA]

In the ID [MT-SR-TA] subclass of problems, we are tasked with determining a time-extended
assignment of single-agent tasks to multi-task agents. Although we are not aware of any mathe-
matical models to represent a general case of this problem, some variants of the Vehicle Routing
Problem (VRP) (Toth & Vigo, 2001) can be considered as falling in this category. For example,
pick-up and delivery (PDP) problems and dial-a-ride (DARP) problems are particular subclasses
of vehicle routing problems that deal with the transportation of packages and people respectively
from given pick-up locations to given drop-off locations (Cordeau & Laporte, 2007), (Desaulniers,
Desrosiers, Erdmann, Solomon & Soumis, 2001). The vehicles can carry multiple packages or
people at a time, and so if we consider the duration of a task to be from when a person/package is
picked up at the pick up location to when it is dropped off at the drop-off location, then the vehicle
can clearly execute multiple tasks at a time, subject to its capacity constraints. PDP and DARP
models can thus be used to represent ID [MT-SR-TA] problems in which tasks have fixed locations
for their beginning and ending but are flexible in terms of what happens in between. Transportation
tasks clearly fall into this category. However, a monitoring task for which an agent must stay within
view of a given point for the duration of the task would not fall into this category and would need
additional constraints on the location of the robot between the start and end of the task. Again, we
are not aware of multi-robot coordination work in this category.

16



5.3 Cross-Schedule Dependencies (XD)
Problems in the XD class involve allocating simple or compound tasks in domains where the
effective utility of a robot for a task depends not only on its own schedule, but also on the schedules
of other robots. There are two common cases where this arises. In the first case, two or more
single-agent tasks which can be allocated to different agents are related by inter-task constraints
such as proximity, precedence, and simultaneity constraints. In the second case, there are multi-
agent tasks each of which need to be allocated to a subset of the agents, resulting in a coalition
formation problem. A key difference between the class of problems with in-schedule dependencies
(ID) and this class with cross-schedule dependencies (XD) is that given an allocation of tasks to
agents, agents can, in the former case, independently optimize their individual schedules, whereas
in the latter case they cannot do so without coordinating with each other.

5.3.1 Cross-Schedule Dependencies in Problems with Single-Robot Tasks:
XD [ST-SR-IA], XD [ST-SR-TA], XD [MT-SR-IA] and XD [MT-SR-TA]

The simplest type of problem with cross-schedule dependencies is when we need to perform an
instantaneous assignment of single-agent tasks, some of which are related by inter-task constraints,
to single-task agents (XD [ST-SR-IA]). Consider a variation on our treasure-gathering scenario in
which the treasures must be deposited at one of two holding bins, instead of being transported to
the robots’ starting locations. The choice of which bin to use for each treasure is made in such
a way as to minimize the objective function, which might be the total distance traveled. If we
specify that particular pairs of treasures which happen to be co-located in the environment must
end up in the same bin even if they are picked up by different agents, this results in cross-schedule
dependencies linking the actions of two different agents.

Similar cross schedule dependencies can arise due to inter-task constraints when computing a
time-extended assignment of tasks to robots (XD [ST-SR-TA]). In our treasure-gathering scenario,
if some treasures are co-located such that they are stacked on each other, then the treasure stacked
on top will need to be moved before the treasure that is underneath. Since each of these tasks
might be assigned to a different robot, this precedence constraint between the two tasks can result
in cross-schedule dependencies.

Mathematical Models
There are a few mathematical models from the combinatorial optimization literature that cap-

ture the notion of cross-schedule dependencies for problems with single-agent tasks. For the in-
stantaneous case, we can consider a further generalization of the assignment problem in which
there are joint, rather than per-agent, side constraints (Mazzola & Neebe, 1986). In the model
below, N is the set of agents, M is the set of tasks, and K is the set of joint side constraints.

Maximize ∑
i∈N

∑
j∈M

uijxij (10)
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Subject to: ∑
i∈N

∑
j∈M

tijxij ≤ Tk ∀k ∈ K∑
i∈N

xij ≤ 1 ∀j ∈M

xij ∈ {0, 1} ∀i ∈ N, ∀j ∈M

(11)

For the time-extended case, the problem of machine scheduling with precedence constraints on
unrelated machines to minimize weighted sum of completion times (R|prec|

∑
wjCj) (Brucker,

2001; Lenstra & Rinnooy Kan, 1978), falls into this category. Mathematical models have also
been proposed for vehicle routing problems with simultaneity and/or precedence constraints (Bred-
ström & Rönnqvist, 2007; Bredström & Rönnqvist, 2008; Larsen, Dohn & Rasmussen, 2009; Ras-
mussen, Justesen, Dohn & Larsen, 2010), and as discussed earlier, these models are better suited
for our task allocation scenario than are the machine scheduling models, since routing times and
costs are captured in these models.

MRTA Solution Approaches
There are a few multi-robot task allocation approaches that support cross-schedule dependen-

cies. The M+ system (Botelho & Alami, 1999) performs task allocation with a market system that
does instantaneous assignment. It supports precedence constraints by allowing negotiation only on
executable tasks, defined as tasks whose antecedents have already been achieved.

MacKenzie (MacKenzie, 2003) supports constraints between tasks using a variant of a market-
based economy. In this approach, an auctioneer puts up several tasks, which have constraints
between them, for auction. The agents then submit for each task not single bids, but rather costs
expressed as functions of constrained variables such as location and time. Given the discretized
cost functions submitted by each agent, the auctioneer then uses a cost minimization algorithm to
determine which agent each task should be awarded to and the values of the constrained variables.
Although the time at which a given task is to be executed may be set based on ordering constraints
between tasks, this method supports only instantaneous assignment of tasks to agents – each agent
is assigned only one task to execute, and the method cannot support determining a schedule of
tasks for each agent.

Chien et al (Chien, Barrett, Estlin & Rabideau, 2000) address a robot routing problem corre-
sponding to a geological scenario in which a team of rovers must perform a set of distributed sci-
ence goals. In addition to individual resource constraints for each rover, there are cross-schedule
constraints resulting from the need to access shared resources, such as a lander that can receive
data from only one rover at time. They present three different approaches to this problem. The
first uses the centralized ASPEN planner which uses several heuristic algorithms (such as an iter-
ative repair algorithm combined with heuristics for m-TSP problems) to compute a conflict-free
schedule for the team. The second approach uses a centralized goal allocation (with equal division
of shared resources) followed by decentralized detailed planning and scheduling by each rover us-
ing the ASPEN planner. The third approach is an auction-based approach in which the individual
rovers use the ASPEN planner to generate bids.
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Lemaire et al (Lemaire, Alami & Lacroix, 2004) support simple ordering constraints between
tasks in the form of “Task x must take place n seconds before task y”. This is done in a simple
way by first auctioning one task to a robot, designated the “master”, that determines the start time
for that task. This is then used to fix the start time of the other task, which is then auctioned to
another robot designated the “slave”. The “master” and “slave” robots now have a relationship that
lasts the duration of the execution of the plans. During this period, they maintain communication
in case dynamic changes in the environment require the tasks to be rescheduled or reallocated to
other robots. This method cannot support arbitrary ordering constraints.

5.3.2 Cross-Schedule Dependencies in Problems with Multi-Robot Tasks (e.g. Coalition
Formation): XD [ST-MR-IA], XD [ST-MR-TA], XD [MT-MR-IA], XD [MT-MR-TA]

Mathematical Models
Identifying a subset of robots to perform a multi-robot task is equivalent to the problem of

coalition formation, which has received a significant amount of interest in the multi-robot coordi-
nation literature. For an instantaneous assignment of tasks to coalitions where each robot can only
perform one task at a time (i.e. can be a member of only one coalition) (XD [ST-MR-IA]), this is
equivalent to the set-partitioning problem (Balas & Padberg, 1976) in combinatorial optimization.
When each robot can perform multiple tasks simultaneously (i.e. be a member of multiple coali-
tions simultaneously) (XD [MT-MR-IA]), it is a set-covering problem (Balas & Padberg, 1976).

The time-extended assignment version of the problem in which each robot can only perform
one task at a time but can be part of different coalitions over time (XD [ST-MR-TA]) bears
some similarity to the Multi-mode Multi-Processor Machine Scheduling Problem (Brucker, 2001;
Bianco, Dell’Olmo, Giordani & Speranza, 1999). In a multi-processor machine schedule prob-
lem, each task requires one or more processors at a time, and the specific processors it needs are
identified in the problem. In a multi-mode multi-processor problem, the specific processors are not
identified; rather, there are a number of possible modes (each corresponding to a particular subset
of processors) and the problem is to both assign a mode and to schedule the task operations. This
is similar, in our problem, to deciding which subset of agents should perform the task, and then
scheduling the task.

The XD [ST-MR-TA] is also addressed in recent work by Ramchurn et al. (Ramchurn, Polukarov,
Farinelli, Truong & Jennings, 2010). They present a mixed-integer programming formulation of
what they describe as the Coalition Formation with Spatial and Temporal Constraints problem
(CFSTP). They also present anytime heuristics to solve this problem.

We know of no existing mathematical models that capture the XD [MT-MR-TA] subcategory
of problems in which we compute a time-extended allocation for a set of tasks that require multiple
agents and for agents that can perform multiple tasks concurrently. We should note that Gerkey
and Matarić (Gerkey & Matarić, 2004) assert that the MT-MR-TA problem is an instance of a
scheduling problem with multiprocessor tasks and multipurpose machines:

MPTmMPMn||
∑

wjCj

We argue that this is not the most appropriate analogy, however, for the following reason. In
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the scheduling literature, a multipurpose machine is defined as a machine that is capable of per-
forming a subset of the tasks (in problems with heterogeneous tasks). This is as opposed to the
typical machine scheduling scenarios where, on one extreme, each processor is considered capa-
ble of performing all the tasks (assuming homogenous tasks) and on the other extreme, each task
must be performed on a specific processor (Brucker, 2001). Thus, the term “multipurpose” proces-
sor/machine does not indicate that the machine is able to perform multiple tasks simultaneously,
as interpreted by Gerkey and Matarić. Also, the case of “unrelated” machines, which we have al-
ready discussed, is equivalent to the case of “unrelated, multi-purpose machines” ((Brucker, 2001),
Chapt. 10). Thus, multipurpose machines correspond, in our problem, to a heterogenous team of
agents, rather than to agents that can perform multiple tasks simultaneously (MT).

MRTA Solution Approaches
There is a lot of work in the multi-robot coordination literature that addresses the coalition

formation problem. For example, Shehory and Kraus (Shehory & Kraus, 1995) address an instan-
taneous assignment problem with multi-agent tasks and single-task agents (XD [ST-MR-IA]) in
which goods of various sizes and weights need to be transported. Some goods can be transported
by a single agent, but others require multiple agents to work together. For example, a crane might
be needed to lift a heavy object onto a truck for transportation. Thus, agents might need to form
coalitions to perform some of the tasks. The authors propose a greedy, distributed, anytime set-
partitioning algorithm to solve this problem. The requirements of a given task are represented by
a vector of required capabilities, and each coalition similarly has a vector of available capabilities.
The coalition value for a task is the joint utility the coalition can reach for cooperating to perform
a task. The first stage in the algorithm is a distributed computation of coalition values, in which
each agent communicates with potential team members and commits to compute the values of a
subset of coalitions of which it could be a member. The next stage involves iteratively deciding
upon preferred coalitions, forming them, and removing the tasks and team members involved in
those coalitions from further consideration. The authors then extend this work to a distributed
set-covering algorithm to solve a XD [MT-MR-IA] problem in which agents can contribute their
capabilities to more than one task at a time, thus resulting in overlapping coalitions (Shehory &
Kraus, 1998). In this latter work, they also address a version of the problem with precedence
constraints by ensuring that when a task is selected for execution, coalitions are simultaneously
formed to perform any pending predecessors of that task.

Vig and Adams (Vig & Adams, 2006) adapt the Shehory and Kraus’s coalition formation al-
gorithm (developed for disembodied agents) to be more suitable for the multi-robot domain by
reducing the required communication, discouraging imbalanced coalitions, and additionally con-
straining the capability vector to specify which of the required capabilities must appear together
on a single robot versus on different robots in the coalition. They apply the adapted algorithm to a
XD [ST-MR-IA] multi-robot coalition formation problem which disallows overlapping coalitions.

Guerrero and Oliver (Guerrero & Oliver, 2003) address an XD [ST-MR-IA] coalition formation
problem with an auction-like mechanism in which a robot that discovers a task becomes its leader
and holds an auction to engage other robots in a coalition to perform the task. Lin and Zheng (Lin
& Zheng, 2005) describe an auction mechanism with combinatorial bids for coalition formation to
perform a task. They define robot and task capability vectors. A robot serving as the “manager” of
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a task announces the task. Interested agents then submit bids specifying their capability vectors.
The manager decides on a subset of the agents to award the task to, and informs them via a task
pre-award message. The selected agents then communicate among themselves to form what the
authors describe as a “bidding combination”, and communicate their acceptance of the award to
the manager who in turn responds with the task allocation. The authors do not give details on how
the manager decides which subset of agents to award the task to.

Shiroma and Campos (Shiroma & Campos, 2009) propose the CoMutaR framework for task
allocation with share-restricted resources. The problem addressed is an XD [MT-MR-IA] problem
in which some tasks require multiple robots, and a robot can perform multiple tasks simultaneously,
subject to constraints on its share-restricted resources such as its communication link, its processor,
and its position. This is achieved via the concept of a robot action that can accomplish a task
while making use of resources on the current robots, or other robots. Multiple actions, addressing
different tasks, can simultaneously run on one robot. Coalitions are formed by sending queries
for the data and resources that the action needs. The solution process uses a single-round auction
which has two stages. In the first stage, the auction for a task is opened up, and each action
capable of performing the task sends out queries for its required inputs, resulting in the formation
of potential coalitions which then bid for the task. In the second stage, the auctioneer determines
and announces a winner.

Koes et al (Koes, Nourbakhsh & Sycara, 2006) addresses a time-extended coalition forma-
tion problem for robots that can perform one task at time (XD [ST-MR-TA]). They represent the
coordination problem as a constraint optimization problem with a mixed integer linear program
(MILP) formulation. They then develop a solution approach named COCoA (Constraint Opti-
mization Coordination Architecture). The approach iteratively combines the use of a commercial
linear programming solver (CPLEX) with a heuristic method that produces a solution that is used
as a starting step for CPLEX.

In our own work (Korsah, 2011), we also address a time-extended task allocation, routing and
scheduling problem in which each agent can perform one task at a time and a given compound task
might require the action of multiple agents (XD [ST-MR-TA]). Furthermore, the problem includes
several cross-schedule constraints and utility dependencies. These include cross-schedule tem-
poral constraints (inter-task precedence, synchronization and non-overlapping constraints). They
also include cross-schedule location-related constraints (inter-task proximity and location capacity
constraints) as well as cross-schedule utility dependencies in the form of delay penalties (costs
for delay or waiting time in an agent’s schedule due to temporal constraints with another agent).
We represent this challenging coordination problem with a set-partitioning MILP formulation, and
present the xTeam planner comprising a custom branch-and-price (Barnhart, Johnson, Nemhauser,
Savelsbergh & Vance, 1998) algorithm for its solution.

5.4 Complex Dependencies (CD)
The CD class of problems involves task allocation for complex tasks in domains where the effec-
tive utility of an agent for a task depends on the schedules of other agents. Recall that complex
tasks have multiple possible decompositions, at least one of which can be allocated to multiple
agents (Zlot, 2006). As such, allocating complex tasks involves answering the question of which
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set of subtasks should be allocated (i.e. which decomposition should be used) in addition to the
standard task allocation and scheduling questions of who should perform each task, and when. As
previously described, complex tasks might exist explicitly in the problem description, or implicitly
as sets of simple tasks that can be composed into complex tasks due to the existence of choices
of constraints. These two sources of complex tasks result in two natural groups of problems with
complex dependencies. The first group are problems which have single-agent tasks (SR) but which
are related by disjunctions of constraints such that we can compose complex tasks. The second
group are problems with multi-agent tasks (MR) that are complex tasks.

We know of no well-known problems or mathematical models in the combinatorial optimiza-
tion literature that capture this problem class. There are, however, a few examples of approaches
in the multi-robot task allocation (MRTA) literature that address problems in this class.

5.4.1 Complex Dependencies in Problems with Single-Robot Tasks:
CD [ST-SR-IA], CD [ST-SR-TA], CD [MT-SR-IA] and CD [MT-SR-TA]

Jones et al (Jones, Dias & Stentz, 2009) address the problem of time-extended multi-robot coor-
dination for domains with “intra-path” constraints. This is exemplified with a disaster-response
problem in which a number of fire tasks need to be assigned to fire-truck robots. There are how-
ever, piles of debris on various roads, blocking some of the routes that the fire trucks must take to
reach the fires. These piles of debris can be cleared by bulldozer robots. Clearly, not not all the
piles of debris need to be cleared; it would be sufficient to clear only the ones along the routes that
will be taken by the fire trucks if these routes were known. However, the cost of each route, and
hence the choice of route, for the fire trucks depends in turn on which piles of debris are cleared.
In the most basic case when each fire requires only one fire truck, and each pile of debris is cleared
by only one bulldozer, this problem is the CD [ST-SR-TA] class. Its solution must simultaneously
determine not only an allocation of fires to fire trucks, but also the paths that the fire trucks should
take to reach the fires and which bulldozers should be assigned to clear debris along these routes.
Jones et al apply two different approaches to this complex task allocation problem. The first uses
tiered auctions along with clustering and opportunistic path planning to perform a bounded search
of possible time-extended schedules and allocations. The second method uses a genetic algorithm.
A more complicated version of Jones’ disaster-response problem, in which multiple fire trucks may
work on one fire or multiple bulldozers may cooperate to clear one pile debris, can be classified in
the CD [ST-MR-TA] category, described in the next section.

5.4.2 Complex Dependencies in Problems with Multi-Robot Tasks:
CD [ST-MR-IA], CD [ST-MR-TA], CD [MT-MR-IA] and CD [MT-MR-TA]

Parker and Tang (Parker & Tang, 2006) present a method for coalition formation through a process
they describe as automated task solution synthesis. This work involves building a solution to a
task by dynamically connecting a network of schemas that reside on individual robots. Schemas
are defined by inputs and output ports, a local variable list, and a behavior. Given the information
types of the inputs and outputs of various schemas, the schemas can be automatically connected
to produce the desired behavior. Thus, different possible schema configurations represent different
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possible ways of achieving a task, and the tasks in this problem can be thought of as complex tasks
since they have multiple possible decompositions. The problem addressed in this work can thus
be classified as a CD [ST-MR-IA] problem. The solution method presented, called ASyMTRe,
greedily searches through the space of potential schema configurations to find a solution. In the
distributed version of the algorithm, ASyMTRe-D, each robot decides what information it needs
and requests this information from others.

Zlot (Zlot, 2006) addresses the problem of time-extended task allocation for explicitly-defined
complex tasks (CD [ST-MR-TA]). For this purpose, TraderBots (Dias, 2004) is extended to enable
agents to auction and bid on task trees, rather than simple tasks. A task tree represents a possible
decomposition of a task. When a task tree is auctioned, robots can bid on either the auctioneer’s
decomposition of the task, or their own decomposition. They can also bid on selected profitable
nodes of the tree, rather than all of them. Once all the bids come in, the auctioneer’s winner
determination algorithm then decides which set of minimally satisfying nodes from the tree result
in the lowest cost team solution.

6 Summary
We have presented a new task allocation taxonomy based on the degree of interrelatedness between
agent-task utilities. The new taxonomy, iTax, is significantly more comprehensive than the current
de facto standard MRTA taxonomy, and provides a useful way of categorizing task allocation prob-
lems in a manner that is strongly related to problem difficulty. It groups task allocation problems
into four natural classes that relate to the problem complexity. Problems in the No Dependencies
(ND) class can generally be modeled by the linear assignment problem, and solved in polynomial
time. Problems in the other classes are generally NP-hard. For problems in the In-Schedule De-
pendencies (ID) class, the schedules of individual agents can be optimized independently of each
other. For problems in the Cross-Schedule Dependencies (XD) class, schedule optimization re-
quires coordination between agents. Finally, the Complex Dependencies (CD) class requires task
decomposition and task allocation to be performed simultaneously.

For each problem class, we present exemplifying problems and mathematical models from
the combinatorial optimization literature. These are summarized in Table 1. We also identified
example problems and solution approaches in the multi-robot coordination literature, summarized
in Table 2. In both tables, greyed-out cells represent nonexistent categories in the taxonomy. Empty
cells indicate categories for which examples from the literature have not been identified.

Acknowledgements
This work was made possible by the support of NPRP grant #1-7-7-5 from the Qatar National
Research Fund. The statements made herein are solely the responsibility of the authors.

23



Table 1: Summary of the two-level task allocation taxonomy, with examplifying problems and
models from combinatorial optimization, vehicle routing, scheduling, and coalition formation

Level 1:
Degree of
Interrelatedness

No Dependencies
(ND)

In-schedule
Dependencies (ID)

Cross-schedule
Dependencies (XD)

Complex
Dependencies
(CD)

L
ev

el
2:

Pr
ob

le
m

C
on

fig
ur

at
io

n ST-SR-IA Linear sum assignment
problem (LSAP)
(Votaw & Orden, 1952)

Assignment problem with side
constraints (APSC) (Mazzola
& Neebe, 1986)

ST-SR-TA Can be reformulated as
Linear sum assignment
problem (LSAP)

Generalized assignment
problem (interpreting
constraints as time limits)
(Shmoys & Tardos, 1993),
Scheduling on unrelated
machines to minimize
weighted sum of
completion times
(R||

∑
wjCj ) (Brucker,

2001; Bruno,
E. G. Coffman & Sethi,
1974),
Multiple Traveling
Salesman Problem
(m-TSP) (Bektas, 2006),
Vehicle Routing Problem
(VRP) (Toth & Vigo,
2001)

Scheduling, with precedence
constraints, on unrelated
machines to minimize
weighted sum of completion
times (R|prec|

∑
wjCj )

(Brucker, 2001; Lenstra &
Rinnooy Kan, 1978),
Vehicle Routing Problems with
precedence or synchronization
constraints (Bredström &
Rönnqvist, 2007; Bredström &
Rönnqvist, 2008)

MT-SR-IA Generalized assignment
problem (interpreting
constraints as capacity
limits) (Savelsbergh, 1997)

Modified version of
Generalized assignment
problem (interpreting
constraints as capacity limits)

MT-SR-TA
ST-MR-IA Set Partitioning Problem

(Balas & Padberg, 1976)
ST-MR-TA Multi-mode Multi-processor

Task Scheduling (Brucker,
2001; Bianco, Dell’Olmo,
Giordani & Speranza, 1999),
Coalition Formation with
Spatial and Temporal
Constraints (CFSTP)
(Ramchurn, Polukarov,
Farinelli, Truong & Jennings,
2010)

MT-MR-IA Set Covering Problem (Balas
& Padberg, 1976)

MT-MR-TA
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Table 2: Summary of the two-level task allocation taxonomy, with some example problems and
solution approaches from the MRTA literature

Level 1:
Degree of
Interrelatedness

No Dependencies (ND) In-schedule
Dependencies (ID)

Cross-schedule
Dependencies (XD)

Complex
Dependencies (CD)

L
ev

el
2:

Pr
ob

le
m

C
on

fig
ur

at
io

n ST-SR-IA Vail & Veloso (Vail &
Veloso, 2003),
Gerey & Matarić (Gerkey
& Matarić, 2002),
Simmons et al (Simmons,
Apfelbaum, Burgard, Fox,
Moors, Thrun & Younes,
2000)

Botelho & Alami (M+)
(Botelho & Alami, 1999),
MacKenzie (MacKenzie,
2003)

ST-SR-TA Brummit et al
(GRAMMPS) (Brummit
& Stentz, 1998),
Melvin et al (Melvin,
Keskinocak, Koenig,
Tovey & Ozkaya, 2007),
Dias (TraderBots) (Dias,
2004),
Berhault et al (Berhault,
Huang, Keskinocak,
Koenig, Elmaghraby,
Griffin & Kleywegt,
2003), ,
Koenig et al (Koenig,
Tovey, Zheng & Sungur,
2007)
Lagoudakis et al
(Lagoudakis, Markakis,
Kempe, Keskinocak,
Kleywegt, Koenig, Tovey,
Meyerson & Jain, 2005)

Chien et al (Chien, Barrett,
Estlin & Rabideau, 2000),
Lemaire et al (Lemaire,
Alami & Lacroix, 2004)

Jones et al (Jones, 2009)

MT-SR-IA
MT-SR-TA
ST-MR-IA Shehory & Kraus

(Shehory & Kraus, 1995),
Vig & Adams (Vig &
Adams, 2006),
Guerrero & Oliver
(Guerrero & Oliver, 2003),
Lin & Zheng (Lin &
Zheng, 2005)

Parker & Tang
(ASyMTRe) (Parker &
Tang, 2006)

ST-MR-TA Koes et al (Koes,
Nourbakhsh & Sycara,
2006)

Zlot (Zlot, 2006)

MT-MR-IA Shiroma & Campos
(CoMutaR) (Shiroma &
Campos, 2009)

MT-MR-TA
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