
Mapping of Services on Bluetooth Radio Networks

J. Dunlop and N. Amanquah
University of Strathclyde -Department of Electronic and Electrical Engineering, Glasgow G1 1XW,

Scotland

Ph.: +44 141 5482081, Fax:+44 141 5524968,
e-mail: {j.dunlop,nathan.amanquah}@strath.ac.uk

ABSTRACT
With the emergence of many short range wireless
connectivity solutions it is expected that a wide range of
devices will become connected together to form a sea of
networked devices. Such an environment has
considerable potential for service provision and
Bluetooth has been specifically designed for operation in
such an environment. However networks of this type
must be equipped with the means to find and configure
both resources and services when both are in a changing
environment. Device and service discovery technologies
are thus very important for successfully networking
diverse services on ad hoc networks. Bluetooth is limited
in this regard but such functionality is provided by Jini,
which is a proprietary distributed computing solution
offering “network plug and play” features. This paper
examines the main issues to be addressed when systems
such as Bluetooth and Jini are combined, and describes
scenarios which have been built into a developing testbed
facilit y designed primarily to investigate middleware
functionality in ad-hoc radio network environments.

1 BLUETOOTH SYSTEM ARCHITECTURE
Bluetooth[1] is a technology specification for small form
factor, low-cost, short range radio links between mobile
PCs, mobile phones and other portable devices. Bluetooth
technology allows for the replacement of the many
proprietary cables that connect one device to another by
a short-range radio link. It is designed to operate in radio
environment with a high level of interference and uses a
fast acknowledgement and frequency hoping scheme to
make the link robust. Bluetooth operates in the unlicensed
Industrial, Scientific and Medical (ISM) band, which is
centred around 2.45 GHz.

The Bluetooth system supports both point-to-point
and point-to-multipoint connections. Several Piconets [3]
can be established and linked together in an ad-hoc
fashion in which each Piconet is identified by a different

 Scatternet

Piconet A
Piconet B

Slave

Slave
Master

Slave
Master

Slave

Figure 1: Bluetooth topology

frequency hopping sequence. The topology is described
as a Scatternet or a multiple Piconet structure as shown in
figure 1.

Up to 10 piconets can coexist in the same location.
The maximum asynchronous data rate within a Piconet is
723.2kb/s. The Bluetooth protocol stack [4] is illustrated
in figure 2.

 vCard/vCal

TCS BIN

WAE
OBEX

SDP

Audio

WAP
UDP TCP

AT-
Commands

IP
PPP

RFCOMM
L2CAP

Baseband
Bluetooth Radio

LMP
Host Controller Interface

Figure 2: The Bluetooth protocol stack.

The core of the Bluetooth protocol architecture
comprises a set of three protocols – the link control and
adaptation protocol (L2CAP), the services discovery
protocol (SDP) and the RFCOMM protocol. Device
information, services and service characteristics can be
queried using the SDP. As with SDP, RFCOMM is
layered on top of the L2CAP. As a cable replacement
protocol, it provides transport capabilities for application-
level services.

2 THE NEED FOR AN APPLICATION PROGRAMMING

INTERFACE (API)
Bluetooth enables connectivity of a large range of devices
with a significant variation in software support
capabilities. Additional advantages of Bluetooth are the
small form facto and low power consumption. Unlike
many other wireless links/technologies, Bluetooth also
incorporates a service discovery protocol (SDP 1.0).
Thus Bluetooth devices can intrinsically discover what
services have been registered on a remote device by
inspecting the SDP Database on that device. In the
Bluetooth environment, where the set of services that are
available can change dynamically based on the RF
proximity of devices in motion, service discovery is
qualitatively different from that in traditional network-
based environments.

However, SDP 1.0 is limited as it provides access to
information about services rather than access to the
services themselves. Further the Bluetooth SDP 1.0 does
not provide brokering of services, negotiation of service

parameters or an event notification when services, or
information about services, become unavailable. Thus
there is a need for a session layer protocol that can
establish a session between the high level applications
where the brokerage of the services and essential
negotiation of the service parameters may take place. Jini,
which is a Java distributed computing component
infrastructure offers a potential solution to this problem.

3 JINI TECHNOLOGY ARCHITECTURE
The Jini[2] architecture provides a distributed
environment for service look-up, registration, and leasing.
To run a Jini service, three components are required: A
web server to host downloadable code for clients, a
Remote Method Invocation (RMI) activation daemon that
invokes long lived services when they are needed and
allows them to switch to an inactive state between calls,
and a Lookup Service that manages a registry of available
services. Jini allows services to be easily added to and
removed from a network or a co-operating community
without any significant change in configuration.
Participants in the network can be notified of changes to
the available services if desired.

Jini is able to create a style of “plug-and-play”
environment for a variety of devices and software
components on a network. Services that join the
community carry the code needed to use them, thus
avoiding the need to install drivers and configuring before
using a service. Such code is dynamically uploaded to a
lookup server (service locator) when a service registers its
proxy with one. A Service Item consisting of the proxy
and a record of searchable attributes is kept on the lookup
service. The proxy is then available to any client that
may search for it and can be downloaded when a client
looks up a service from a service locator. A proxy may
have all the intelli gence to provide a service, or contact a
backend device/service by a proprietary protocol (if
desired) or by RMI in order to provide the service.
 Clients search lookup services for services that
implement a particular interface, by a unique service ID
or by inspecting informative service “attributes” . Both
clients and services search for lookup services by means
of Multicast or Unicast protocols. The latter is used when
the location/URL of the service is known before hand.

The Jini programming model is shown in figure 3. In
an operational Jini system there are 3 main components,
the Client which requires the service, the Service (a trivial
example would be a printer) and the Service Locator
which acts as a locator/broker/trader between clients and
services. In addition there will be a network which
interconnects these components which will generally be
running TCP/IP. In the context of the Jini system a
service is a logical concept which will normally be
defined and identified by a Java interface.

Referring to figure 3 when the service locator receives
a request for a service from a client or a request for
registration from a service provider it returns an object
known as a registrar that acts as a proxy for the service.
The proxy will t hen communicate with other objects in
the service provider using a protocol supported by the
Java RMI.

Client

Client

Client

Client

Service Locator Discovery

Invocation

Service Registration

Service Look-up

Service
Locator

Service
Locator

Service
Locator

Service
Locator

Service
Provider

Service
Provider

Service
Provider

Service
Provider

Multicast request
for Service Locator

identification

Register service
object & attributes

Look-up service
by type

object

object

proxy

proxy

object

object

attributes

attributes

attributes

attributes

registrar

Response

Client interacts directly
with Service Provider

Confirm registration
(send registrar)

Load
service proxy

Figure 3: The Jini programming model

4 BLUETOOTH-JINI COMPLEMENTARY PAIR
Jini readily interfaces with the Bluetooth protocol stack at
the TCP/IP-UDP layer. The SDP1.0 along with the Look-
up Locator of Jini can establish the necessary platform for
the registration and brokering of services. Bluetooth and
Jini are potentially a complementary pair in service
discovery and utili sation, particularly in an ad hoc
network. In such a network, there is no centralised body
or node to administer network addresses assigned to each
participating node. TCP/IP is required for Jini and Java
applications to run. To establish a TCP/IP connection, the
Bluetooth LAN access profile, may be used. This is
dependent on the RFCOMM (the Bluetooth adaptation of
the GSM TS 07.10 for serial port emulation) and PPP
protocols, which work just as they would in the Serial
port profile. This profile is suitable when one device is
configured as a LAN Access Point, and the client as a
Data Terminal. Alternatively, the Dial Up networking
profile may be used when one node has been configured
as a “gateway” node. The RFCOMM (serial port
connection) in conjunction with PPP may also be used
directly but this may require a Dial-up server and Modem
Emulation. The mode of connection will depend on the
profiles implemented in the two devices establishing a
link.

The LAN Access profile supports single or multiple
devices or PC to PC PPP networking over serial port
emulation. A LAN Access Point provides access to the

LAN by providing the services of a PPP server, and
connection is over an emulated serial port (the
RFCOMM) Using appropriate PPP mechanisms, a
suitable IP address is assigned to the client. The PPP over
RFCOMM used in this profile differs from using PPP in
the Dial-Up Networking Profile in that no AT commands
are used in establishing the link.

A Jini service or client may discover services, which
are “near” to it in network terms. One method used is the
lookup discovery, which depends on multicast of packets
to addresses within the same subnet. This would include
both Bluetooth enabled nodes and wired terminals that
share a similar address space governed by their IP
Address Subnet Mask. Packets may not be forwarded to
nodes on other segments of the network using a different
subnet even if they were attached to the same physical
medium. This is as a result of using a multicast-based
protocol. The other discovery method- the lookup locator,
may locate services on different subnets provided the full
IP address or URL to this location is given.

For security considerations or by virtue of network
configuration, a service may not be available on the local
IP subnet using multicast methods. Bluetooth devices will
be able to establish a connection not withstanding the IP
addresses assigned to the hosts. An entry may be made in
the Bluetooth SDP to indicate the URL and port where
the Lookup server or other service may be contacted by
unicast methods.

5 SDP CLIENT-SERVER INTERACTION
The service discovery protocol of Bluetooth provides the
means for client applications to discover the existence of
services provided by server applications as well as the
attributes of those services. The attributes of a service
include the type or class of service offered and the
mechanism or protocol information needed to utili se the
service. This is ill ustrated in figure 4.

 Client
Application

Server
Application

SDP
Client

Bluetooth-Jini
Interface

SDP Requests

SDP Responses

SDP
Server

Figure 4: SDP client-server interaction

There is a maximum of one SDP server per Bluetooth
device which may function both as a SDP server and as a
SDP client irrespective of the number of applications on
the device providing service.

6 COMMUNICATION SEQUENCE
This section describes the communications sequence
designed to implement an applications programming
interface which interacts with the Bluetooth service
discovery protocol. The SDP client will discover the

services of the SDP server using the Service Discovery
Protocol. The Jini application running at the client side
will manage the search at both ends as well as the start
and finish of the services at the application level.

Step 1: The Client Side Java Application, figure 5,
prepares the Entry forms for identifying the service in the
network. These Entry Forms are then passed on to the
SDP Client after appropriate mapping at the Bluetooth –
Jini Interface.

Lease Period
Manager

Start and Stop
Services

JAVA A PPLICATION
(service request)

Sets up entry formats for service
searching and templates for

storing the results

Jini Service Manager

Bluetooth - Jini Interface

Bluetooth SDP Client

Figure 5: Client side of a Jini Application

Step 2: The SDP Client searches for the service in the
network using the SDP of Bluetooth.

Step 3: The service information registered with the
SDP Server, shown in figure 6, matches the request sent
by the client and sends a confirmation upon the successful
match. (It should be noted that the SDP Server does not
have to refer to the higher end Server side Jini
Application at this stage.)

 Service Locator
(holds interfaces of
registered services)

Jini Services
(interfaces and

implementations)

Jini Service Manager

Bluetooth - Jini Interface

Bluetooth SDP Server

Figure 6: Server Side of a Jini Application

Step 4: The Search results are then sent back to the
SDP Client by the SDP Server (after a successful match).
These results are passed back to the Client Side
Application and stored in the templates created by the
Java Application.

Step 5: A request for the service arrives from the Jini
Service Manager through the Java Application. A suitable
TCP/IP based connection is then established to the Server
and then the control is carried out in the higher layers.

Step 6: After initial negotiations (i.e. lease period and
other such quality of service parameters) the Jini interface
is sent to the client end.

Step 7: The Start and Stop module of the Jini Service
Manager will pass the start and stop parameters to the
Server and the service is then run either at the Server or
Client side depending on design of the service. This may
require marshalling and un-marshalling of results or
objects as appropriate.

Step 8: After the successful execution of the service,
the client ends the contract (a typical sign off) and hence
the interface implementation is completed and the lease
manager finally submits the lease contract back to the
server. The signalling exchanges associated with steps 1
to 8 are shown in figure 7.

Jini can handle multiple client requests. Jini also
accommodates less well behaved applications (for
example applications that do not do perform a normal
shutdown, or simply move out of radio range) by means
of its leasing technology. Jini can be employed to
monitor Bluetooth links so that when the lease on a Jini
service expires and is not renewed, the associated
Bluetooth connection may be closed and resources
released or suspended. Furthermore, Jini uses event
notification to update the status of a client or service
when there are changes to the available services and
configuration. Some Bluetooth enabled devices may not
have enough resources to run a Lookup Service and
services required to run a Jini service. Nevertheless, a Jini
application may still access such information on such
services using a subset of the steps described.

7 EXPERIMENTAL TESTBED
The testbed described in this paper is being developed to
assess middleware functionality in ad-hoc radio networks.
To assess the signalling exchanges proposed in figure 7,
two networked PCs and two Bluetooth enabled PCs were
set up to mimic different clients and services. (Scenarios
implemented are envisioned to include several Bluetooth
enabled devices.) A web server, a remote method
invocation (RMI) daemon, and a service locator were run

on one Bluetooth enabled PC that acted as a server. The
client PC only runs a client Jini application. The
arrangement implements the following scenarios
(depicted in figures 8 and 9 respectively):

Client

Gateway

To LAN

Figure 8: Wireless link between Client and Gateway

a) A Bluetooth enabled PC acting as gateway is
connected by a LAN to two other PCs that offer or
implement services. Two utility services (e.g.
electricity and gas), a simple security system and an
electrical appliance can be accessed from this
gateway. The client (e.g. an emulated PDA) may
browse for the list of services available, make a choice
from the three presented, bind to, interact with and
control the service selected.

b) A Bluetooth enabled PC acts as a gateway, and a
second Bluetooth enabled PC acts as a controlled
device, with a Bluetooth link to the gateway/server. A
client may interact with the service offered by the
second PC by accessing and interacting with the proxy
on the gateway. The proxy in turn interacts with and
controls the service remotely over the Bluetooth link.
The testbed was restricted to one wireless link
between the gateway and a service, other links being
wired.

 Java Client
Application

Jini Service
Manager

Bluetooth
SDP Client

Bluetooth
SDP Server

Jini Service
Manager

Java Server
Application

Prepare entry
forms for service ID Map service request

onto Bluetooth
Search for service

using Bluetooth SDP

Confirm Registration
(send UUID)

Request Registration

Identify Service

Pass Parameters

Request Service (negotiate lease period and service parameters)

Transfer Service Results

Service
Search Results

Map Results onto
Java Appl Format

Pass Start/Stop Parameters
Send Jini Service Interface

Sign Off

Store Results
in Templates

Register with SDP

Figure 7: Signalling exchanges in Jini/Bluetooth environment

Client

Gateway

Figure 9: Wireless links between all devices and gateway.

In case a) both unicast and multicast methods are used. To
establish a connection, the signalli ng sequence in Figure 7
is followed. Two options were explored for service
discovery:
i) A client first fill s out a template with a query for the

existence of a Lookup Service on the remote
Bluetooth device and checks if TCP/IP connection
may be established with this device. If a link on a
suitable profile can be established, and a Lookup
Service is available directly on this Server, a TCP/IP
link is set up. The IP address (or URL) of the look up
service is read directly from the SDP and a unicast
request is made to the Lookup service. Next, the Jini
client interrogates the Lookup service for Jini services
desired and binds to a service for a renewable lease
period.

(ii) The Client formulates a request for a given service X.
This is mapped to the local Bluetooth SDP (as
depicted in Figure 7), which in turn queries the remote
Bluetooth SDP for that particular service as well as
the existence of a Jini Lookup service. If the service X
is not available at this location a search can be
performed on other devices. This option requires that
all Jini services available at a Bluetooth enabled
device register with the Bluetooth SDP so that remote
Bluetooth devices may contact them. A “gateway
services manager” can be made responsible for
registering all services (local and remote), which may
be accessed from this point, on the service locator
with the local SDP. This is useful in an ad hoc
network as a client will not then need to search all
devices in range for a desired service.

A set of primitives for interacting with the SDP were
defined as a Jini class which applications that wish to
interact with the SDP extend. Other functions that
abstract commonly used functions are also provided.
These were employed in the scenarios described and
found to work as desired. A number of Jini (IP based)
services were created and run independently. A Bluetooth
enabled device (mobile terminal) was brought within
radio range. A successful service discovery revealed the
services available on the network. The client could then
make a selection from those presented and bind to the
service.

The average time (over 5 sessions) to initialise the
Bluetooth system, and perform an inquiry is 13.97s. The
inquiry period is a fixed 12.8s but can be optimised. A
further 3.2s is required to establish a TCP/IP session. It

takes 0.45s to query the remote SDP for four service
names matching a query (76 bytes of data returned) and
0.45s to write 15 attributes into the local SDP. A server
takes 7.11s to start and register with the Lookup service
compared to 1.44s over a wired LAN. The corresponding
times taken by a client are a subject of further work.
These values have been obtained from a typical Jini
service, without optimising either the performance of the
Bluetooth link or the Jini application.

In this testbed, a proprietary network profile was used
in lieu of using the LAN access profile or Dial Up
Networking profile in conjunction with a PPP server or
LAN Access Point at the receiving end. Either would
provide the TCP/IP connection that was desired. The
relative merits of using unicast Lookup Locator or
multicast Lookup Discovery Jini requests on the network
is a topic for further work. Further work will also
determine the effect of having more than seven devices
connected to a gateway, some of which will be in a parked
mode at any given time, but all taking part in a Jini
community. Multi -hopping over other nodes in order to
join a Jini community or to access a Jini Lookup service
is an essential QoS support mechanism which will be
evaluated as the testbed develops.

8 CONCLUSION
This paper has concentrated on the need for the mapping
of evolving services onto the Bluetooth protocol stack.
In particular it has drawn attention to limitations of the
Bluetooth service discovery protocol and the need to
provide an application programming interface. An
implementation has been described that interfaces Jini
services with the Bluetooth service discovery protocol.
By using a set of suitably defined API, applications can
be rapidly developed and deployed in a uniform way. The
successful implementation of IP based JINI services
demonstrates that Bluetooth can be adapted by running a
suitable service discovery protocol over it.

This implies that new services can be created and
delivered directly to clients by independent third parties
which is an important feature for emerging 4G services
which will i nvolve trading of information and quality at
the point of service access. This work is part of an
ongoing study by the UK Virtual Centre of Excellence in
Mobile and Personal Communications (MVCE) on
middleware functionality in ad-hoc radio networks. The
work described in this paper indicates that incorporating
limited versions of Jini in embedded devices can serve as
a useful platform for combining Bluetooth and Jini in
service discovery in the ad hoc wireless network
environment.

It is envisaged that Bluetooth will play an important
part in emergence of truly virtual mobile network
operators and therefore must be able to support the
functionality which will be an essential element of service
brokering, negotiation of service parameters and quality
of service guarantees. The paper has outlined an API
based on Java Jini, and ill ustrated the essential steps
required to interface such an API with the Bluetooth SDP
and described tested scenarios based on this.

9 ACKNOWLEDGEMENT
The work reported in this paper has formed part of the
WA1 area of the Core 2 Research Programme of the
Virtual Centre of Excellence in Mobile & Personal
Communications, Mobile VCE, www.mobilevce.co.uk,
whose funding support, including that of EPSRC, is
gratefully acknowledged. More detailed technical reports
on this research are available to Industrial Members of
Mobile VCE.

10 REFERENCES
[1] Bluetooth Special Interest Group, “ The Bluetooth

Specification” ,
http://www.bluetooth.com/developer/specification/spe
cification.asp, April 2000.

[2] Sun MicroSystems, “Jini Network Technology” ,
http://www.sun.com/jini, August 2001.

[3] Motorola, “Bluetooth in Action” ,
http://www.mot.com/bluetooth/action/index.html
April 2000.

[4] “Bluetooth Overview” ,
http://www.palowireless.com/bluetooth, August 2001.

