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Abstract— In this paper, we present an approach to bounded
optimal planning and flexible execution for a robot team per-
forming a set of spatially distributed tasks related by temporal
ordering constraints such as precedence or synchronization.
Furthermore, the manner in which the temporal constraints
are satisfied impacts the overall utility of the team, due to the
existence of both routing and delay costs. We present a bounded
optimal offline planner for task allocation and scheduling in the
presence of such cross-schedule dependencies, and a flexible,
distributed online plan execution strategy. The integrated sys-
tem performs task allocation and scheduling, executes the plans
smoothly in the face of real-world variations in operation speed
and task execution time, and ensures graceful degradation in
the event of task failure. We demonstrate the capabilities of
our approach on a team of three pioneer robots operating in
an indoor environment. Experimental results demonstrate that
the approach is effective for constrained planning and execution
in the face of real-world variations.

I. INTRODUCTION

Multi-robot teams will increasingly be used to address het-
erogeneous spatially distributed tasks in domains where no
single team member can effectively execute all tasks. In some
cases, tasks are distributed among robots for independent ex-
ecution, whereas others require constant and tightly-coupled
interaction amongst robots. The multi-robot coordination
problems addressed in this paper involve spatially distributed
tasks related by temporal constraints. Furthermore, there
may be costs associated with delays needed to ensure that
temporal constraints are satisfied. Such problems have cross-
schedule dependencies [1] because the schedules of different
robots are interdependent. This rich category of problems
spans domains such as emergency assistance, agriculture, and
planetary exploration.

This paper addresses bounded optimal task allocation and
scheduling for problems with such temporal cross-schedule
dependencies. It further addresses the flexible execution of
the resulting temporally constrained plans in the presence of
execution-time operating variations.

The contributions of this paper are three-fold:
1) xTeam: a planner that computes an anytime, bounded

optimal solution to a task allocation and scheduling
problem with cross-schedule dependencies. Due to
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space limitations, we focus on its support of key
temporal cross-schedule dependencies and omit several
other details [1].

2) An approach to flexible execution of temporally con-
strained plans, based on the plays paradigm [2]. The
execution strategy ensures that temporal constraints are
satisfied despite timing variations during execution.

3) xBots: an integrated planning and execution sys-
tem that combines the xTeam planner and the plays
paradigm with a tool for automatically translating the
computed constrained plans into a form suitable for
flexible execution. We evaluate the developed approach
on a a team of indoor robots performing a set of
spatially distributed tasks.

The organization of the remainder of the paper is as
follows. Section II presents related work while Section III
describes details of the xBots approach. Results on the
functionality of the planner are summarized in Section IV,
while Section V describes the experimental setup and robot
test results demonstrating flexible plan execution. Finally,
Section VI concludes with a discussion of future work.

II. RELATED WORK

For efficient planning, market-based strategies have been
proven useful in many multi-robot task allocation problems
[3], [4]. In these approaches, agents are designed as self-
interested entities that operate in a virtual economy by bid-
ding on tasks. Recent work has begun to address some inter-
task dependencies [5] and also to give some bounds on worst-
case performance [6]. However, market-based approaches in
general do not provide optimality guarantees, particularly for
time-extended task allocation.

Mathematical programming approaches express the coor-
dination problem as a mixed integer programming problem
(MIP), which can then be solved optimally. Such approaches
are common in Operations Research, particularly for vehicle
routing problems (VRPs). Some recent work in optimal
approaches to multi-robot coordination and vehicle routing
incorporates inter-task temporal constraints [7], [8]. How-
ever, this work does not plan for cases where satisfying these
constraints has an impact on the overall team cost, neither
does it address execution of the constrained plans, given real-
world timing variations.

Popular approaches to plan execution use negotiation to
formulate team plans and ensure conflict-free execution. For
example, Alami et al. [9] present a framework for multi-
robot cooperation to achieve independent goals (i.e. goals not
related by constraints). Goals are allocated to robots using



the market-based M+NTA (Negotiation for Task Achieve-
ment) scheme. The M+CTA (Cooperative Task Achievement)
scheme then addresses resource conflicts by inserting tem-
poral order constraints between actions of different robots.
As another example, Joyeux et al [10] present a shared
“plan database” for building, negotiating, and executing
multi-robot plans. Other relevant work includes CAMPOUT
by Pirjanian et al [11], a distributed multi-robot control
architecture that represents joint team activities using a finite
state machine augmented with synchronization primitives
for tight coordination of group activities. None of these
approaches address optimal planning and flexible execution
of tasks related by temporal constraints.

Simple Temporal Networks (STNs) [12] represent flexible
time plans by specifying task start times as windows and
determining precise times only during execution. STNs have
been used to enable flexible scheduling of the plans of
individual agents operating as part of a team [13]. While
STNs represent flexible plans, they do not by themselves
represent optimal plans. The use of STNs is complementary
to our approach which ensures satisfaction of cross-schedule
constraints during execution of a pre-computed optimal plan.

In summary, while there is diverse literature on multi-robot
coordination, a review reveals a dearth of discussion on opti-
mal planning for problems with cross-schedule dependencies,
and on multi-robot execution of constrained optimal plans.

III. APPROACH

The xBots system architecture consists of a planning
module and an execution module, illustrated in Figure 1.
The planning module computes an anytime bounded optimal
allocation of tasks to agents and a schedule for task exe-
cution. That is, it computes progressively better solutions,
terminating with either the optimal solution or the best
solution it can find in the allotted planning time, along with
bounds on suboptimality. The computed schedule specifies
task start times and waiting times needed to ensure that tem-
poral constraints are satisfied. This plan is then transferred
to the execution module. In an ideal world, the computed
plans could be executed as-is by the individual agents and
would collectively satisfy all the cross-schedule constraints.
In reality however, rigid execution strategies are susceptible
to failure due to variations in the operating domain. Thus,
agents must have an awareness of the high-level constraints
impinging on their part of the team plan and a strategy to en-
able execution of the plan. The agents do not, however, need
to be tightly coupled and can operate largely independently
except when cross-schedule constraints need to be satisfied.
To achieve this, we implement a distributed plan execution
strategy, based on the plays [2] paradigm, in which agents
are loosely-coupled and intermittently synchronize with each
other. We also outline an automated approach, implemented
by a “Translator” sub-module, for converting the generated
multi-robot plan to a flexible plan that can accommodate real-
world execution-time variations. Thus, the execution strategy
can be decoupled from the xTeam planner and optionally
used with other solvers.
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Fig. 1. xBots approach for optimal planning and flexible execution

A. Problem Formulation

A set of mobile agents, K, is available to perform a
collection of tasks. Each multi-agent task can be decomposed
into simpler single-agent tasks. Each single-agent task j∈J
requires specific agent capabilities and consists of one or
more spatially distributed subtasks, i∈I which may each have
agent capacity requirements. Subtasks of different tasks may
be related by temporal constraints, thus creating dependen-
cies between different agents’ schedules.

To enable computation of an optimal solution, we for-
mulate a set-partitioning mixed-integer programming model,
with side constraints, for this problem. The terms in this
model are summarized in Table I, while the model itself
appears in Figure 2.

A binary variable, xr
k represents whether a given agent k is

assigned to a particular route (single-agent plan), r, out of all
feasible routes Rk for that agent. The real-valued execution-
delay variable dki represents the amount of time that agent k,
having arrived at the chosen location for subtask i, has to wait
before it can begin execution of subtask i. ti represents the
time that execution begins on subtask i. In addition to these
domain variables, a “helper” variable, ai′i, represents the
delay in the arrival time for subtask i due to the execution-
delay time for subtask i′ occurring earlier on the same route.
These arrival-delay variables are needed simply to ensure a
linear formulation; without them, the model would need to
be non-linear, containing product terms of the form dki x

k
r .

Solving the model involves generating feasible routes and
assigning values of 0 or 1 to route variables to maximize the
difference between task rewards and travel and delay costs
(Eq. 1 in Figure 2). Problem constraints in the model define
the feasibility of the basic task allocation and scheduling
problem. They specify that each agent must perform at most
one route (C1) and each task is performed on at most one
route (C2). They also ensure the consistency of the time
and delay variables (C3-C5c). Domain constraints model the
domain-specific temporal constraints, namely time window
constraints (C6a-C6b), precedence constraints (C7a-C7b),
and synchronization constraints (C8a-C8b).



TABLE I
DEFINED VARIABLES AND TERMS

Var. Definition Type
Domain Variables
xkr Whether agent k performs route r Binary
dki Delay time of agent k for subtask i Real
ti Execution start time for subtask i Real
“Helper” Variables
ai′i Arrival delay for subtask i due to subtask i′ Real
Term Definition Type
Rk Feasible routes for agent k∈K Set
P Pairwise precedence constraints Set
S Pairwise synchronization constraints Set
vj Value of completing task j. Real
ck1r Travel cost for route r∈Rk Real
ck2 Wait cost per unit time for agent k Real
πk
jr Whether task/subtask j occurs on route r Binary
λi Service duration for subtask i Real
δk
i′ir Whether subtask i′ comes before i on route r Binary
[αi, βi] Valid time window for starting subtask i Real
τkir Time that agent k would arrive at subtask i

on route r∈Rk if no delays were necessary
Real

µj Max. allowed time span for task j Real
Di Max. allowed delay time for subtask i Real
τ∞ End of planning horizon Real
εPi1i2 Min. time gap between completing subtask i1

and commencing subtask i2 for (i1, i2)∈P
Real

εSi1i2 Exact time gap between commencing service
on subtasks i1 and i2 for (i1, i2)∈S

Real

yj Whether task/subtask j is performed Binary
=

∑
k∈K

∑
r∈Rk

πk
jrx

k
r

B. Plan generation

Mixed integer programming problems are generally solved
in a branch-and-bound framework. To begin, a bound on the
solution is computed by relaxing the integrality constraints
and solving the resulting linear program. Subsequently,
branching decisions are made on fractional variables that
should be integer, and the solution process is repeated at each
node of the branch-and-bound tree, until a solution is found
that satisfies the integer constraints and whose objective
value is at least as good as the best bound on the tree nodes.

In a set-partitioning model like ours, with a large number
of route variables, it is not possible to enumerate all possible
variables/columns in the problem up front, and this is where
a column generation process is useful. That is, the algorithm
initially considers a subset of columns (in our case, feasible
routes) in the “master” problem given by the set-partioning
model. Then, additional columns to be added are determined
by solving a pricing subproblem, derived from the dual
variables of the model. A branch-and-price algorithm [14] is
a branch-and-bound algorithm in which column generation
occurs at each node of the branch-and-bound tree.

xTeam is a custom branch-and-price algorithm that com-
putes progressively better solutions, with bounds on quality,
until it returns a provably optimal solution. Due to space
limitations, we omit its full details [1]. However, we briefly
describe the pricing subproblem used for column generation,
and the branching decisions used to ensure feasible solutions.

Designating the dual variables of our model as ua
b (where

Maximize:∑
j∈J

∑
k∈K

∑
r∈Rk

vjπ
k
jrx

k
r −

∑
k∈K

∑
r∈Rk

ck1rx
k
r −

∑
i∈I

∑
k∈K

ck2d
k
i

(1)

Subject to: Problem Constraints:∑
r∈Rk

xkr ≤ 1 ∀k∈K (C1)

∑
k∈K

∑
r∈Rk

πk
jrx

k
r ≤ 1 ∀j∈J (C2)

ti −
∑
k∈K

∑
r∈Rk

τkirπ
k
irx

k
r−∑

i′∈I

ai′i −
∑
k∈K

dki = 0
∀i∈I (C3)

dki −Di

∑
r∈Rk

πk
irx

k
r ≤ 0 ∀i∈I, k∈K (C4)

∑
k∈K

dki′ − ai′i+

Di′
∑
k∈K

∑
r∈Rk

(δki′irx
k
r ) ≤ Di′

∀i′, i∈I (C5a)

ai′i −Di′
∑
k∈K

∑
r∈Rk

δki′irx
k
r ≤ 0 ∀i′, i∈I (C5b)

ai′i −
∑
k∈K

dki′ ≤ 0 ∀i′, i∈I (C5c)

and Domain Constraints:
−ti + αi

∑
k∈K

∑
r∈Rk

πk
irx

k
r ≤ 0 ∀i∈I (C6a)

ti − βi
∑
k∈K

∑
r∈Rk

πk
irx

k
r ≤ 0 ∀i∈I (C6b)

yi − yi′ ≤ 0 ∀(i′, i)∈P (C7a)
ti′ − ti + λi′+

τ∞(yi − yi′) + εPi′iyi′ ≤ 0
∀(i′, i)∈P (C7b)

yi′ − yi = 0 ∀(i′, i)∈S (C8a)

ti′ − ti + εSi′iyi′ = 0 ∀(i′, i)∈S (C8b)

Fig. 2. Mathematical model

a indicates a constraint type and b indicates an instance of
that constraint), we use linear programming theory to derive
the pricing subproblem for our model to be the problem of
finding feasible routes r for agent k for which the following
quantity is positive:

pkr = −(u1
k + ck1r) +

∑
i∈I

(Diu
4
ik − αiu

6a
i + βiu

6b
i )πk

ir

+
∑
j∈J

(vj − u2
j )π

k

i
j
or
−

∑
(i′i)∈P

(u8a
i′i + τ∞u

8b
i′i)π

k
ir

+
∑

(i′i)∈P

(u8a
i′i + (τ∞ − εPi′i − λk

i′)u
8b
i′i)π

k
i′r

−
∑

(i′i)∈S

(u9a
i′i + εSi′iu

9b
i′i)π

k
i′r +

∑
(i′i)∈S

u9a
i′iπ

k
ir

+
∑
i∈I

τkiru
3
iπ

k
ir +

∑
i′∈I

∑
i∈I

(Di′u
5b
i′i −Di′u

5a
i′i)δ

k
i′ir

(2)



Solving this pricing subproblem involves searching for a
route through a graph in which nodes represent subtasks
and edges indicate that an agent can perform one subtask
after another. Transition costs in the graph include node
costs, edge costs, and costs that depend on the order of
subtasks along partial routes leading up to a node. This
last cost term arises due to the presence of cross-schedule
dependencies, and significantly complicates the problem. A
“profitable” feasible route is one that satisfies agent capacity
constraints and branching constraints at the current branch-
and-bound node, and whose overall cost is positive. Such
routes, if they exist, could potentially increase the objective
function of the solution. At each branch-and-bound node,
we find such routes, add one or more of them to the master
problem, re-solve the relaxed master problem, and continue
the column generation process. When no such route is found,
column generation ends at that node, and the branch-and-
bound process continues.

To find feasible integer solutions, we adopt the following
branching decisions, in the priority order listed below.
• Branching on task pairs ‘together’: When there are a

fractional routing variables such that two tasks occur
together on one route but not on another, we branch by
forcing the tasks to be on the same route (“together”) in
one branch and on different routes in the other branch.

• Branching on subtask pair order: When the fractional
routing variables include two routes with the same
subtasks performed in different orders, we constrain the
subtasks to occur in a specific order in one branch and
the opposite order in the other branch.

• Branching on task agent: When the fractional routing
variables represent the same route performed by two
different agents, we branch by forcing a task on that
route to be performed by a given agent in one branch,
and not by that agent in the other branch.

The optimal plan computed by the planner specifies an
assignment of tasks to agents, and an order and schedule
by which the agents should perform their assigned tasks.
The schedule specifies precise task start times to ensure
that cross-schedule constraints are satisfied. The computed
optimal plan is transferred to the execution module.

C. Plan execution

Our plan execution strategy builds on the notion of plays,
which are representations of deliberative multi-agent plans as
coordinated sequences of team actions [2]. A play specifies
a number of roles, and a role represents a sequence of
actions to be executed by a single agent. Each agent on
the team has a PlayExecutor, for executing actions, and a
PlayManager, for monitoring current play participation and
for handling all intra-play communications. For a given play,
only one robot’s PlayManager can have ownership of the
play, with each of the other participating robots responsible
for reporting their status to the play owner. Although initially
formulated as a centralized, synchronous system in which
the actions performed by each role are executed in lock step
with other roles in the play, the most recent implementation

allows for a more distributed approach in which plays are
represented through a play specification strategy based on
the Ruby scripting language [15]. This provides the flexibility
for dynamic on-the-fly scripting of plays during execution. In
our approach, the computed plan is automatically translated
into a play whose roles comprise the individual single-agent
plans computed by the planner. We further extend the plays
paradigm such that it supports communication between roles
to satisfy temporal constraints when required, but otherwise
allows roles to be executed independently.

D. Plan translation for flexible execution

To make play execution flexible to operational variations,
we need to be able to synchronize between different roles
of the play when cross-schedule constraints need to be
satisfied. We achieve this by one or more of the following
synchronization-related actions:
send-message(key, msg): Sends a given message to a speci-
fied team member.
read-message(key): Checks for receipt of a specified mes-
sage, waiting (up to a configured timeout) if that message
has not yet been received.
check-message(key): Checks for receipt of a specified mes-
sage, but does not wait if that message has not yet arrived.
read-message-by-time: Checks for receipt of a specified
message, waiting up to a specified maximum end time, if
that message has not yet been received.
wait-for-time: Waits until a specified time, if that time has
not been reached, before beginning execution of the subtask.

Using the synchronization actions, the computed plans
can be transformed to ensure satisfaction of cross-schedule
temporal and time window constraints, as follows:
Precedence Constraints: For a precedence constraint such
that task A must be performed before B, the agent that
performs A sends a message, once that task is complete,
to the agent assigned to B. Conversely, the agent assigned
to B waits to receive a message concerning the successful
completion of A before beginning execution of B. If the
message indicates that A was successful, then the agent
begins execution of B. Otherwise, it does not attempt to
execute B but moves on to the next task in its schedule,
removing from its schedule any additional tasks that depend
on B and also notifying any other agents scheduled to
execute tasks for which B is a pre-requisite. This enables
graceful degradation of the plan in the event of task failure.
Synchronization Constraints: For a synchronization con-
straint such that tasks A and B must be performed at
the same time, the agent assigned to each task sends a
message, once it is ready to execute its task, to the agent
assigned to the other task. Each agent then waits to receive
the corresponding “Ready” message from the other agent,
before beginning execution of its task. A message other than
”Ready” indicates failure and the synchronized task is not
executed. A configured timeout value indicates how long an
agent will wait for a synchronization message.
Time Window Constraints: If there are time window con-
straints for a given subtask, the wait-for-time action is used



to ensure that a subtask is not executed before the beginning
of its allowed time window. Similarly, a task will not be
executed if an agent arrives at the location of the task after
its time window. In the event that the task is the second task
in a precedence constraint, or is involved in a synchronization
constraint, a read-message-by-time action is used instead of
the read-message action, to avoid waiting beyond the end
of the allowed time window.

The synchronization actions must be used in a specific
order to ensure feasible execution of the plan. Consider a
segment of the computed plan that comprises traveling to a
subtask location, optionally waiting for a specified amount
of time, then performing the subtask:

travel-to <subtask location>
wait-till <subtask start time>
execute <subtask>

This plan segment is augmented with the synchronization
actions as follows:

travel-to <subtask location>

for each precedence constr (A,B) where <subtask>=B
read-or-wait-for-message("A-done")

for each synchronization constr (<subtask>,B)
send-message ("<subtask>-ready", agent(B))

for each synchronization constr (<subtask>,B)
read-or-wait-for-message("B-ready")

execute <subtask>

for each precedence constr (A,B) where <subtask>=A
send-message ("<subtask>-done", agent(B))

If the subtask has an allowed time window, a wait-till
action is inserted right after the travel-to action, and the read-
message-by-time action is used instead of the read-message
action. Note that for multi-way synchronization constraints
(between more than two agents), the synchronization con-
straints between all pairs of agents in the group must be
represented. Graceful degradation of the plan is enabled by
skipping a subtask if the communicated message indicates
that its required preceding or simultaneous subtasks cannot
be executed. The agent then moves on to the next subtask
in its plan. Furthermore, whenever a read-message or read-
message-by-time action is needed prior to performing a task,
the agent uses a check-message action before beginning
travel to the task location, in order to avoid unnecessary
travel if a message has been sent reporting unsuccessful
completion of prerequisites of the task in question.

As the number of messages sent is proportional to the
number of pairwise inter-task constraints in the problem, and
the size of each message is only a few bytes, the bandwidth
requirements of the approach is negligible. The approach is
agnostic to the robot control architecture and, thus works
well with heterogeneous agents. It can be further extended
to handle imperfect communication between agents.

IV. PLAN GENERATION EXPERIMENTS AND RESULTS

While there exists a variety of problems with cross-
schedule dependencies, for this paper we focus on a example
scenario that involves providing transportation and sheltering

assistance, in the event of an emergency, to clients with
special needs. In this scenario, each client needs to be
visited by a medical agent and then subsequently picked
up and moved to an emergency shelter by a transportation
agent. Consequently, there are temporal constraints between
the medical visit and transportation of a client, and costs
associated both with agents’ travel times and with their
waiting times. The term delay penalty describes the real-
valued ratio between agent waiting costs and travel costs.
For example, a delay penalty of 0 indicates that waiting time
(e.g. to satisfy synchronization constraints) is not penalized,
whereas a delay penalty of 0.5 indicates that it costs the
agents half as much to wait as to travel for a given amount of
time. Figure 3 illustrates an example problem with 6 clients,
2 shelters, 2 transportation agents and 1 medical agent.
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Fig. 3. Example problem with 6 clients, 2 transportation agents, 1 medical
agent, and 2 shelters. Axes are in simulation distance units.

Figures 4(a) and 4(b) illustrate the optimal solution to
the example problem with delay penalties of 0.0 and 0.5
respectively. In each case, the top subfigure illustrates the
routes computed for each agent, while the bottom subfigure
illustrates the computed schedules, coded by travel time,
delay time, and service time. Service times are annotated
with the subtask type (V for “visit”, P for “pickup” and D
for “dropoff”) and client IDs. For drop-off subtasks, they are
further annotated with the shelter ID. Table II summarizes
the travel time, delay time and overall team cost for the
two scenarios. With a delay penalty of 0, the algorithm
computes the route that minimizes the agents’ travel time.
This however, results in a significant amount of delay for
each transportation agent, which must wait for the medical
agent to visit a client before it can transport that client. With
a delay penalty of 0.5, the algorithm computes a new solution
that has significantly less delay time. This new solution uses
only one transportation agent, indicating that the algorithm
effectively recognized that having only one medical agent
creates a bottleneck such that extra transportation agents
spend a lot of time waiting.

Figure 5 shows the value of the best solution and best
bound over time for this problem, for delay penalties of 0.0
and 0.5. In both cases, the algorithm finds good solutions
early, demonstrating anytime, bounded optimal behavior.
However, a non-zero delay penalty has a significant impact
on the time it takes to find and prove the optimal solution.
This is because the algorithm must essentially evaluate the
trade-off between travel time and delay time in potential
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Fig. 4. Optimal routes (top) and schedules (bottom) for example problem
with a delay penalty of (a) 0.0 and (b) 0.5. Distances and times are in
simulation distance and time units respectively.

TABLE II
OPTIMAL SOLUTION TO EXAMPLE PROBLEM

Delay Total Total Total
Penalty travel time delay time team cost

(dp) (tt) (td) (tt + dp ∗ td)
0.0 204.14 252.32 204.14
0.5 241.71 9.06 246.24

(All times measured in simulation time units)

solutions it encounters during the solution process.
Figure 6 shows the total time to find and prove the

optimal solution, averaged over 5 random instances of each
problem configuration, and for problems with delay penalties
of 0 and 0.5. Both for scenarios with precedence and those
with synchronization constraints, the combinatorial nature of
the problem is apparent in the rapid increase in the time
needed to prove solution optimality as the problem size
increases. Planning time was capped at 30 minutes, and the
bottom graph indicates the ratio of the terminating solution
to the terminating bound. A ratio of 1 indicates optimality.
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Fig. 5. Example solution profiles

The figure also highlights the impact of delay penalties
on problem difficulty. It illustrates that in the presence of
precedence constraints (Figure 6(a)), problems that optimize
a weighted sum of travel and delay time are significantly
more difficult than those that optimize travel time alone.
Problems with synchronization constraints (Figure 6(b)) are
more difficult than ones with precedence constraints.
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(b) Synchronization constraints

Fig. 6. Planning time to find and provide optimal solution

V. PLAN EXECUTION EXPERIMENTS AND RESULTS

A. Experimental Setup

For our tests, we use a team of three (3) Pioneer P3-DX
robots, one of which represents a medical agent while the
other two (2) represent transportation agents. There are five
(5) clients that require transportation assistance. In the first
scenario, the medical visit is a two-part activity, the second
part of which had to be scheduled at the same time as the
pickup of the transportation service, as would occur if the
agent performing the medical visit task also helps with client
boarding. This is modeled as a synchronization constraint
between the medical visit’s second subtask and the pickup
subtask. In the second scenario, the medical visit precedes the
transportation service, resulting in precedence constraints.

The experiments were run in a roughly 10m x 15m indoor
space. Based on prior experimentation, robot capabilities and
operational domain, we determined an average operational
speed of the robots (0.2 m/s) to be used by the xTeam
planner towards optimal plan generation. Furthermore, the
expected execution times for each part of the medical visit
tasks were scaled down to be comparable to the travel times
in the indoor test area. Consequently, the expected execution
times for each part of the medical visit tasks was 3s and for
a total medical visit time of 6s per client. The pickup and
drop-off tasks were each specified to require 3s each.

The routes computed by the planner were the same for
both the synchronization and the the precedence scenarios
(see Figure 7(a)). The computed timeline for the synchro-
nization scenario, showing travel time, waiting time, and task
execution time for each agent, is illustrated in Figure 7(b),
while that for the precedence scenario is in Figure 7(c).

To validate that constraints are not violated despite devi-
ations from the plan conditions during execution, the robots
were tested for three different execution cases using the same
generated optimal plan. In the first case, the durations of both
types of tasks were as expected. In the second, the first part of
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Fig. 7. Optimal plan computed for the experiment problem

each medical visit task was shorter than expected (1s instead
of 3s), while in the third, the first part of each medical visit
task was longer than expected (5s instead of 3s). The agents
executed their plans in one of 3 modes:
Flex mode: This mode represents the flexible execution
strategy described in this paper, in which the agents relax
the precise schedules computed by the planner and exchange
synchronization messages as needed to determine when
subtasks can be feasibly executed.
Fixed-start mode: In this mode, the agents do not exchange
synchronization messages during plan execution. Each agent
instead attempts to adhere to the subtask start times specified
by the plan. If an agent reaches a location before the specified
subtask start time, it waits before beginning execution. If it
arrives late, it immediately executes the subtask and then
moves on to the next item in its plan.
Fixed-wait mode: The agents do not exchange synchro-
nization messages in this mode either. Instead, they adhere
strictly to the wait times specified by the plan. Whenever an
agent arrives at a location, it waits for precisely the amount
of waiting time, if any, specified by the plan. It then executes
the subtask and moves on to the next item in the plan.

For each of the two problem scenarios (synchronization
and precedence) and each of the three execution cases
(normal-length visits, shorter-length visits, and longer-length
visits), the team of robots conducted three runs in each of
the three possible execution modes (flex mode, fixed-start
mode, and fixed-wait mode), for a total of 54 experimental
runs. During execution, the agents’ travel speeds varied

slightly, due to “real world” mobility considerations such as
an unexpected obstacle, inter-robot path interference, noisy
sensors etc. To evaluate the performance of our execution
strategy, we analyze the system under two operational modes,
that of constraint satisfaction and graceful degradation.

B. Constraint satisfaction results
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Fig. 8. Sample execution timelines for the synchronization scenario

Figure 8 shows the timelines for sample runs of each of the
three execution strategies for the case with synchronization
constraints and normal-length visits. In the sample run using
the flex mode, the relevant subtasks were perfectly synchro-
nized. To achieve this, a short wait time was automatically
inserted between the two parts of the medical visit to client
C3, the first client visited by the medical agent (Agent 2).
Similarly, waiting time was inserted between the two parts
of the visit to client C4, because the travel time of the trans-
portation agent, Agent 1, with which the medical agent had to
synchronize, was longer than expected. For the sample runs
using the “fixed-start” and “fixed-wait” execution modes,
most of the subtasks to be synchronized were considerably
mis-aligned, due to execution time variations in travel speed.

For corresponding runs with precedence constraints, we
found that the constraints were often satisfied using all three
execution strategies. This is because precedence constraints
allow more flexibility than synchronization constraints, and
because the medical agent’s travel time was generally not
much worse than expected. However, the plan was completed
earlier in the “flex” execution mode than it was in the other
two modes and hence was more efficient.



In the event of a constraint violation, we computed an
associated “constraint violation time”, given by:
Synchronization Constraints: If subtasks A and B are sup-
posed to be executed together, than the constraint violation
time is the absolute value of the difference between the start
times of subtask A and subtask B.
Precedence Constraints: If subtask A is supposed to be done
before B, but B is started before A, then the constraint
violation time is the amount of time between the start time
of B and the completion time of A. If B is started after the
completion time of A, the constraint violation time is 0.

The constraint violation time for an entire plan execution
is the sum of the violation times for each constraint. Our test
runs each have 5 constraints. Figure 9 shows the constraint
violation time per run, averaged over 3 runs for each execu-
tion mode and scenario. It illustrates that the “flex” execution
mode effectively prevents constraint violations.
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Fig. 9. Constraint violations for synchronization scenario (left) and for
precedence scenario (right)

C. Graceful degradation results

In certain situations, graceful degradation allows the sys-
tem to isolate failure states during execution and to continue
executing the rest of the plan. We tested this feature of our
approach by simulating a failure or task cancellation for
the second client visited by the medical agent. Once the
medical agent detects failure, it communicates to cancel the
associated transportation task for the client. Consequently,
one of two situations arises. In the first situation, termed the
“abort” scenario, the task cancellation is communicated to
the transportation agent only after the medical agent reaches
the intended client location. Thus, each agent still does as
much traveling as before and cannot reduce the overall length
of the remaining plan. Alternately, in the second situation,
termed the “skip” scenario, the medical agent learns of the
task cancellation before it sets off to the client location,
and communicates this information to the transportation
agent. Consequently, both the medical and transportation
agents skip visiting the client location altogether. Thus, the
overall travel time and plan completion time for the team is
reduced. Table III summarizes the medical agent travel times,
transport agent travel and waiting times, and plan completion
times for experimental runs of these two scenarios.

VI. CONCLUSION AND FUTURE WORK

We present an approach for generating optimal plans
and for flexible execution of multi-robot plans with cross-

TABLE III
GRACEFUL DEGRADATION

Abort Scenario Skip Scenario
Medical agent travel time (s) 77.15 ± 8.08 53.67 ± 1.23
Transport agent travel time (s) 98.69 ± 7.07 75.10 ± 7.94
Transport agent waiting time (s) 63.19 ± 18.96 37.52 ± 3.78
Plan completion time (s) 120.81 ± 9.58 93.93 ± 0.82

schedule temporal constraints. The approach includes an
anytime, bounded optimal planner and a flexible execution
strategy that ensures that temporal ordering constraints are
satisfied, even in the face of real-world variations during plan
execution. The approach also allows for graceful degradation
of the plan when tasks fail or cannot be executed. Our future
work will extend the notion of graceful degradation to re-
planning when tasks fail or new tasks come in, thus closing
the loop between the planning and execution modules.

REFERENCES

[1] G. A. Korsah, “Exploring bounded optimal coordination for hetero-
geneous teams with cross-schedule dependencies,” Ph.D. dissertation,
Robotics Institute, Carnegie Mellon Univ., Pittsburgh, PA, Jan 2011.

[2] M. Bowling, B. Browning, and M. Veloso, “Plays as effective multia-
gent plans enabling opponent-adaptive play selection,” in Proceedings
of International Conference on Automated Planning and Scheduling
(ICAPS’04), 2004.

[3] M. B. Dias, “Traderbots: A new paradigm for robust and efficient
multirobot coordination in dynamic environments,” Ph.D. dissertation,
Robotics Institute, Carnegie Mellon Univ., Pittsburgh, PA, Jan 2004.
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