Binary Space Partition Tree and Constructive Solid Geometry

Representations for Objects Bounded by Curved Surfaces

Suzanne F. Buchele

Angela C. Roles

Department of Mathematics and Computer Science
Southwestern University

Abstract

Binary Space Partition (BSP) tree and Constructive
Solid Geometry (CSG) tree representations are both
set-theoretic binary tree representations of solid ob-
jects used in solid modeling and computer graphics.
Recently, an extension of the traditional BSP tree def-
inition has been presented, in which surfaces used in
the binary partition include curved surfaces in addi-
tion to planar surfaces. We examine the relationship
between this extended definition of BSP trees and half-
space CSG trees, including conversion between the two
representations, in light of this new BSP tree definition
for solid objects bounded by curved surfaces.

1 Introduction

Binary Space Partition (BSP) tree and Constructive
Solid Geometry (CSG) tree representations are widely
used to represent solid objects. Until recently, BSP tree
representations were restricted to objects bounded by
linear surfaces (lines in 2-D, planes in 3-D). Thus BSP
trees were applicable only to polyhedral objects in 3-D.
The conversion to and from BSP tree representations
and CSG tree representations of 2-D and 3-D solid ob-
jects has not been succinctly studied in the past, largely
because BSP trees represented a far more limited class
of objects.

The conversion of a boundary representation (b-rep)
of a solid object to a BSP tree representation has been
presented for both polyhedral [6] objects and objects
bounded by quadric surfaces [1]. Boundary representa-
tion to CSG conversion has also been presented [1, 5].

We present a discussion of the relationship between
BSP tree and CSG tree representations of solid objects
in 2-D and 3-D. While the theory of BSP and CSG
tree representations are applicable to d-dimensional
Euclidean space, we focus on 2-D and 3-D applications
for practical purposes. The current b-rep to BSP and
CSG tree implementations [1, 5] function in 3-D.

2 Background Material

2.1 Regular Sets and Halfspaces

The use of regular sets and regularized set operations
prevents the occurrence of “dangling” edges or surfaces
(subsets with empty interior) in set-theoretic represen-
tations of solids. A set X is said to be regular if X
is equal to the closure of the interior of X; that is,
X = cl(int(X)). Thus, the regularization of a set X is
the closure of the interior of X. Regularized set opera-
tions operate on regular sets, where the defined binary
set operations are regularized union (U*), regularized
intersection (N*), and regularized set difference (—*).
The unary set operation regularized complement (7*)
is also defined. For two regular sets X and Y and a bi-
nary set operation < op >, X < op >*Y = cl(int(X <
op > Y)). The regularized complement of X, X, is
the closure of the interior of the complement of X [4].

In 3-D, a halfspace is a set of the form h = {(z,y, 2) :
g(z,y,2) > 0} for some function g that maps R® into
R. We refine the types of halfspaces that we use for
both BSP trees and halfspace CSG trees to include
only halfspaces h that are non-empty regular sets, and
such that the regularized complement halfspace B s
also a non-empty set (and is regular by definition).
We refer to zeroes of the function g defining the half-
space as the surface of the halfspace, S, = {(z,y,2) :
g9(z,y,z) = 0}, and we say the surface S}, induces the
two halfspaces h = {(z,y,2) : g(z,y,2) > 0} and
no= {(z,y,2) : g(z,y,2) < 0}. Buchele [1] points
out that non-degenerate quadric surfaces of a single
sheet induce two non-empty, regular halfspaces, as do
many other types of polynomial and non-polynomial
functions.

2.2 BSP Trees

A binary space partition tree, or BSP tree, is a bi-
nary tree that recursively partitions d-dimensional Eu-
clidean space. The primary application of BSP trees
is to represent a subset of R?. In the traditional def-

inition of BSP trees, the space is split into two parts
by a hyperplane, and each of the subspaces created is
recursively split until the entire space is split into ho-
mogeneous regions which are either completely inside
or outside the total region to be represented. In our de-
velopment, we assume that the left child of an internal
node represents the “positive” side of the partitioning
surface, e.g. {(z,y,2) : g(z,y,2) > 0}. The right child
of an internal node represents the “negative” side of the
partitioning surface, {(z,y, 2) : g(z,y,2) < 0}. Homo-
geneous regions (leaves) in a BSP tree are denoted by
“in” or “out” cells, depending on whether the region
represented by that leaf is completely inside or outside
of the total region to be represented.

In the traditional definition of BSP trees, internal
nodes are hyperplanes: lines in 2-D and planes in
3-D. Recently, Buchele [1] proposed an extended defini-
tion of BSP trees, in which curved surfaces are allowed
as partitioning surfaces. Equations of the partition-
ing surfaces are stored in internal nodes. For a curved
surface in 3-D defined by {(z,y,2) : g(z,y,z) = 0},
the left subtree represents the halfspace h = {(z,y, 2) :
g(z,y,2) > 0}, and the right subtree represents the
halfspace B o= {(z,y,2) : g(z,y,2) < 0}. We use this
extended definition when we refer to BSP trees in this
paper. Note that the extended definition of BSP trees
includes the traditional definition. An example of a
two-dimensional solid and a BSP tree representation
of it is given in Figures 2a and 2b.

For a given object in R, we define the faces of the
object to be maximally connected components of sur-
faces bounding the object. Surfaces containing faces
bounding the object are called natural surfaces of the
object [1]. A natural halfspace of the object is a half-
space associated with a natural surface of the object
[5]. An autopartition of the object is defined to be a
binary partition of R3, separating the object from the
rest of R? such that only natural surfaces of the object
are used in the partition [3].

2.3 Halfspace CSG Tree Representa-
tions

A CSG tree is a binary tree that has regularized set
operations as internal nodes and regular sets as leaves.
CSG trees are also used to represent subsets of R¢; the
represented region is the result of applying the regular-
ized set operations on the regular sets. An advantage
of the use of CSG trees to represent solid objects is the
fact that regularized set operations applied to regular
sets always produces a regular set.

Halfspace CSG trees perform regularized set opera-
tions on regular sets that are halfspaces. We restrict
our attention to halfspace CSG trees, whose leaves are
non-empty regular halfspaces in R®, and such that the

BSP_to_CSG (BSP tree B)

Input: BSP tree B
OQutput: CSG tree C
Methods used:

Compl(): returns the complement of the halfspace parameter

If B.right is “out”
If B.left is “in”
C.root : = B.root
Else
C.root, C.left, C.right : = N*, BSP_to.CSG(B.left), B.root
Else If B.left is “out”
If B.right is “in”
C.root : = Compl(B.root)
Else
C.root, C.left, C.right : = N*, BSP_to_.CSG(B.right), Compl(B.root)
Else If B.left is “in”
C.root, C.left, C.right : = U*, B.root, BSP_to_CSG(B.right)
Else If B.right is “in”
C.root, C.left, C.right : = U*, Compl(B.root), BSP_to_CSG (B.left)
Else /* B.root has both a left subtree and a right subtree */
C.root, C.left, C.right : = U*, n*, n*
C.left.left : = BSP_to_CSG(B.left)
C.left.right : = B.root
C.right.left : = Compl(B.root)
C.right.right : = BSP_-to_CSG(B.right)
Return C

Figure 1: Algorithm BSP _to_.CSG

corresponding regularized complement halfspace exists
and is non-empty.

3 BSP to CSG Conversion

A simplistic and verbose approach to the BSP to half-
space CSG conversion problem is to note that an object
represented by a BSP tree can also be represented by
the union of the “in” cells in the tree. An “in” cell in
a BSP tree can be represented as the intersection of
all halfspaces on the path from the root node of the
BSP tree to the “in” cell. Buchele [1] presented and
proved the correctness of a more efficient algorithm,
called BBHC, to take a BSP tree representation of an
object and convert it to a halfspace CSG tree represen-
tation of the object. Algorithm BSP_to_CSG (Figure
1) is an algorithmic restatement the BBHC algorithm,
and takes as input a BSP tree representation of a 3-D
object and recursively processes each node in order to
form a CSG representation of the object. We assume
that the input BSP tree is in a simplified form, in that
no internal node has two “in” cells or two “out” cells
as child nodes.

Algorithm BSP_to_CSG begins with the root node
of the BSP tree, and processes each internal node in
the tree through recursive calls to the BSP_to_CSG al-
gorithm. Let halfspace h (initially the root node) be
the internal node in the BSP tree under consideration
in the BSP_to_CSG algorithm. If A has an “in” cell
and an internal node as children, the corresponding
CSG representation will consist of the union of A or
1" with the CSG representation of the subtree rooted
at the internal node (formed by a recursive call to the
BSP_to_CSG algorithm). If the “in” cell is the left child
of h, then the corresponding CSG representation of the
BSP tree rooted at h will be the union of A and the

CSG-conversion of the right subtree of h. If the “in”
cell is the right child of A, then the CSG representation
of the BSP tree rooted at h will consist of the union
of " and the CSG-conversion of the left subtree of A.
The CSG representation of the child subtree is formed
by a recursive call to the BSP_to_CSG algorithm.

If h has an “out” cell and an internal node as chil-
dren, the CSG representation will be the intersection
of hor h* with the CSG representation of the subtree
rooted at the internal node. If the “out” cell is the right
child of h, then the corresponding CSG representation
of the BSP tree rooted at h will be the intersection of
h and the CSG-conversion of the left subtree of h. If
the “out” cell is the left child of h, then the CSG rep-
resentation of the BSP tree rooted at h will consist of
the intersection of &" and the CSG-conversion of the
right subtree of h.

If h has as children an “in” cell and an “out” cell,
then the CSG representation will simply be h or &' If
the “in” cell is the left child of h, h is used in the CSG
tree. Similarly, if the “in” cell is the right child of A,
1" will be used in the CSG tree.

Otherwise, h has internal nodes as both of its chil-
dren. The CSG representation of the left subtree of h
is intersected with halfspace h in order to obtain the
region defined on the positive side of h. Similarly, the
CSG representation of the right subtree of h is inter-
sected with halfspace 1" in order to obtain the region
defined on h". The CSG representation of each sub-
tree is obtained by recursive calls to the BSP_to_CSG
algorithm. The CSG representation of the BSP tree
rooted at h then consists of the union of these two in-
tersections.

For example, Figure 2a denotes an object in two di-
mensions. Figure 2b shows an extended BSP tree rep-
resentation for this object, and Figure 2c¢ shows the
corresponding CSG tree representation generated by
the BSP_to_CSG algorithm. At the root of the in-
put BSP tree, h; has children which are both internal
nodes. Therefore, the CSG tree in 2c has a root which
is a union node, with both children intersection nodes.
The left intersection node, as the algorithm specifies,
has as children the CSG conversion of h;’s left subtree
(that which is rooted by hy in the BSP tree), and the
positive halfspace h;. The right intersection node has
as children CSG conversion of h;’s right subtree (that
which is rooted by hs in the BSP tree) and the negative
halfspace h;.

In the subtree rooted by h4 in the BSP tree, the
right child of h4 is an “out” cell, and the left child is
an internal node (the subtree rooted at h3). Therefore,
the root of the CSG representation for this region is an
intersection node, the left child is the CSG conversion
of the subtree rooted at hs, and the right child is h4.
For the subtree rooted at hs, hs has both an “in” cell

a)
h,
"
/h4 /hz
hy, out in hg
/ N\ 7\
in out in out
b)
U
Fd W
n/* \h h_/ \u*
A
h3 h4 h2 h5
c)

Figure 2: (a) Two-dimensional object (shaded region).
(b) A BSP tree representation of the object. (c) A half-
space CSG tree representation of the object, obtained
using the BSP _to_CSG algorithm.

and an “out” cell, so hs is used in the corresponding
CSG tree of figure 2c.

In the subtree rooted at hy (the left subtree of the
BSP root node), the left child of hs is an “in” cell, and
the right child is an internal node (the subtree rooted
at hs). Therefore, the root of the CSG representation
for this region is a union node, the union node’s left
child is ho, and the right child is the CSG conversion
of the subtree rooted at hs, which is just hs.

Due to the straightforward nature of the
BSP _to_ CSG algorithm, and the proof of correct-
ness by Buchele [1], we arrive at the following
Lemma;:

Lemma: An arbitrary BSP tree of size n internal
nodes can be converted to a CSG tree representation
of O(n) size in O(n) time.

Proof: We assume that the input BSP tree is simpli-
fied in that no internal node can be replaced with an
“in” or “out” cell; if so, an O(n) pre-processing step

may be applied to perform any necessary replacement.
Let B be a BSP tree of size n internal nodes, and let C
be the CSG tree resulting from the BSP_to_CSG algo-
rithm. Each of the n internal nodes of B translates to
at most 3 internal nodes in C. However, at least one
internal node in B must have both an “in” cell and an
“out” cell (two leaves) as children, and thus translates
to a single leaf node in C. So, |C| < 3n where n is the
size of B. Thus the size of C is O(n).

Clearly, conversion is completed in O(n) time since
each internal node of B is visited exactly once. O

It is not always the case that a BSP tree which uses
only natural surfaces in an object (surfaces in the au-
topartition of the object) will exist. Due to the pres-
ence of curved surfaces, partitioning surfaces may be
necessary to represent the object [1, 5]. However, we
have shown that if a BSP tree of size n internal nodes
of the object does exist, using either natural surfaces
of the object or natural surfaces and additional parti-
tioning surfaces, then the object can be represented by
an O(n) sized halfspace CSG tree as well.

4 CSG to BSP Conversion

Thibault and Naylor [6] presented work on the use of
(traditional) BSP trees as a method for representing
polyhedra, and the use of BSP tree algorithms to im-
plement set operations on polyhedra. As part of this
work, they presented an algorithm to convert a CSG
tree to a (traditional) BSP tree. Later, Naylor et. al.
[2] presented an algorithm called Merge Bspts which
takes as input two BSP trees that partition the same
subspace and merges them together. This is accom-
plished by systematically partitioning one tree by the
binary partitioner at the root of the other, and recur-
sively overlaying the partitionings from the two trees.

We propose a new algorithm, CSG_to_BSP, to con-
vert a CSG tree representation of an object to a BSP
tree representation (Figure 3). The Merge Bspts al-
gorithm [2] is used to implement the union or inter-
section of two subtrees that have already been con-
verted to BSP trees. The fundamental operation of
the Merge_Bspts algorithm, Partition Bspt [2], is used
to partition a subtree by a halfspace, and it is at this
point that either union, intersection, or set difference
can be carried out to implement the operation between
the two trees. Code to implement this fundamental
operation of partitioning an existing BSP tree by a
single halfspace, for a halfspace defined by a quadric
surface of a single sheet and a BSP tree whose node
halfspaces are defined by quadric surfaces of a single
sheet, is implemented in the BB method presented by
Buchele [1]. Thus, the CSG_to_BSP algorithm is imple-
mentable for CSG trees representing objects bounded

CSG-to_BSP (CSG tree C)

Input: CSG tree C
Output: BSP tree B
Methods used:
CSG_Union_Isect(): converts CSG tree to contain only U* and N*
operations
Merge_Bspts(): Naylor’s Merge_Bspts(), with added parameter
to specify U* or N*

C : = CSG_Union_Isect(C)
If C.root a halfspace
B.root, B.left, B.right : = C.root, “in”, “out”
Else
If C.root an operation AND (C.left OR C.right a halfspace)
If C.root is N*
If C.right a halfspace
B.root : = C.right
B.left, B.right : = CSG_to_BSP (C.left), “out”
Else If C.left a halfspace
B.root : = C.left
B.left, B.right : = CSG_to_BSP (C.right), “out”
Else If C.root is U*
If C.right a halfspace
B.root : = C.right
B.left, B.right : = “in”, CSG-to_-BSP (C.left)
Else If C.left a halfspace
B.root : = C.left
B.left, B.right : = “in”, CSG-to_BSP (C.right)
Else
B.left, B.right : = CSG_to_BSP (C.left), CSG_to_BSP (C.right)
If C.root is N*
B : = Merge_Bspts (B.left, B.right, N*)
Else If C.root is U*
B : = Merge_Bspts (B.left, B.right, U*)
Return B

Figure 3: Algorithm CSG_to.BSP

by quadric surfaces of a single sheet.

The CSG_to_BSP algorithm requires that the CSG
tree representation of the region be in terms of regular-
ized unions and regularized intersections only. This can
be accomplished easily, since for regular sets X and Y,
X—*Y = Xn*Y". Therefore, expressing a CSG tree in
terms of regularized unions and intersections only re-
quires that any —* (regularized set subtractions) in the
tree be converted to N* (regularized set intersection),
with the right child of the regularized intersection node
complemented. DeMorgan’s Laws can be used to com-
plement subtrees properly. In the CSG_to_BSP algo-
rithm, the method CSG_Union_Isect carries out this
preliminary conversion.

In the CSG to BSP conversion itself, the root node
of the tree is first checked. If this node is already a
halfspace (a leaf), the BSP tree returned contains that
node as the root, with an “in” cell and an “out” cell
as its children. Otherwise, the tree is more than just a
leaf and there is at least one set operation that must be
handled. If the root operation is U* and at least one
of the children is a halfspace, then that child which
is a halfspace (or the right halfspace, if both children
are halfspaces) becomes the root of the output BSP
tree. The right child of this halfspace in the BSP tree
then becomes an “out” cell, and the left child will be
the CSG to BSP conversion of the intersection node’s
other subtree, through a recursive call to the algorithm.
Similarly, if the root operation is N* and at least one
of the children is a halfspace, then that child which
is a halfspace (or, again, the right halfspace, if both
children are halfspaces) becomes the root of the out-

a)
n,!./U\n*
& KO
/ \ hG 1 / X @
h, hg h, /ﬂ\ .
h, /ﬂ\
hy b
b)
h h
P * /N
/hs\ out U /hz\out
in /h7 /h3\ out
in out h;, out
h/ o\ut
i
in out
<)
hg
P 7
in /h7\ hz\out
in out h,, out
h/ o\ut
/ 5\
./h4\out
in out
d)

Figure 4: (a) Two-dimensional object (shaded region).
(b) A halfspace CSG tree representation of the object,
consisting only of unions and intersections. (c¢) An in-
termediate step in the CSG_to_BSP algorithm (d) BSP
tree representation of the object, obtained using algo-
rithm CSG_to_BSP

put BSP tree. The left child in the BSP tree, in this
case, then becomes an “in” cell. The right child will be
the CSG to BSP conversion of the union node’s other
subtree, once again through a recursive call. If none

of the above cases are true, then the root node of the
CSG tree has as children two set operation nodes. In
this case, both children are therefore roots of subtrees.
Both of these subtrees are converted to BSP trees using
recursive calls to the CSG_to_BSP algorithm. These
two BSP trees are then merged using a version of the
Merge Bspts algorithm presented by Naylor et. al. [2].
The only difference in form is an added parameter to
specify whether a union or an intersection should be
carried out at the operation between the two input
trees.

For example, figure 4a denotes a two-dimensional
solid which is represented in figure 4b by a CSG tree
consisting only of unions and intersections. Figure
4c shows an intermediate step, and figure 4d shows
the BSP tree representation of the figure which re-
sults from the CSG_to_BSP algorithm. The root of the
CSG tree is a union, with intersections as both chil-
dren. Therefore, the left and right subtrees of the root
union node will be converted to BSP trees separately
and then merged. At the lowest levels, the subtrees
will be merged accordingly with “in” or “out” cells. In
the left subtree, rooted by an intersection, the inter-
section’s right child is a halfspace, hg. Therefore, hg
becomes the root of the resulting BSP tree, the left
child of hg will be the BSP conversion of the intersec-
tion’s other child, and the right child of hg will be an
“out” cell. The intersection’s left child is the union of
two halfspaces, so hg becomes the root of the left child
of hg in the BSP tree. The left child of hg becomes
an “in” cell (since the root of the corresponding CSG
tree was a union node), and the right child of hg is hz,
which has an “in” cell and an “out” cell as children. In
figure 4c, the BSP conversion of the left subtree of the
root of the CSG tree is shown on the left.

In the right subtree of the root union node, the root
is again an intersection. The intersection’s left child is
a halfspace, and the right child is a subtree. There-
fore, the root of the BSP conversion of this subtree is
a halfspace, hy. The left child of h; is the BSP con-
version of the right subtree of the intersection, and the
right child of h; is an “out” cell. This manner of con-
struction continues similarly, until, at the bottom of
the CSG tree, we have an intersection node with right
child hs and left child hy. So, hs becomes the root
of the corresponding BSP subtree, the right child of hs
will be an “out” cell, and the left child of A5 is the BSP
conversion of CSG node h4, which is the BSP node hy
with both an “in” cell and an “out” cell as children. In
figure 4c, the BSP conversion of the right subtree of the
root of the CSG tree is shown on the right. Now, since
both the left and right subtrees of the root of the CSG
tree have been converted to BSP trees, merging can be
carried out, and results of applying the Merge Bspts
algorithm is shown in figure 4d.

Given the algorithm above, we can conclude that
if there exists a CSG tree representation of an object
(bounded by second degree polynomials), then there
will always exist an extended BSP tree representation
of the object.

5 Concluding Remarks

Algorithm BSP_to_CSG will convert an arbitrary BSP
tree of n internal nodes into an O(n) halfspace CSG
tree representation in O(n) time. The CSG_to_BSP
algorithm will convert an arbitrary halfspace CSG tree
into a BSP tree. Since we have conversion both ways,
our results show that BSP trees and CSG trees can
both represent the same objects.

Future work is possible for determining the com-
plexity of the CSG_to.BSP algorithm. Thibault and
Naylor do not present a complexity argument for their
CSG to (traditional) BSP conversion algorithm [6], al-
though it appears to be O(2™). It can be shown that
the CSG_to_BSP algorithm presented here produces a
BSP tree in O(n*) time for a CSG tree of size n nodes
in worst case. This is because the Merge Bspts algo-
rithm [2] is O(n®) for non-planar surfaces in the worst
case, and will have to be done at most once at each
of the O(n) set operation nodes of the CSG tree. If
we assume that each face of the represented object is
bounded by a constant number of adjoining faces, then
an overall CSG _to_BSP worst case complexity of O(n?)
can be shown. As with many complexity results in BSP
tree theory, it may be the case that the CSG_to_BSP
algorithm operates in O(n) or O(n?) time and produces
an O(n) sized BSP tree in practice, even though the
worst case size and time complexity is much larger.

References

[1] S. F. Buchele. Three-Dimensional Binary Space
Partitioning Tree and Constructive Solid Geometry
Tree Construction from Algebraic Boundary Rep-
resentations, Ph.D. Dissertation, The University of
Texas at Austin, 1999.

[2] B. Naylor, J. Amatides, and W. Thibault. Merging
BSP Trees Yields Polyhedral Set Operations, Com-
puter Graphics, Vol. 24, No. 4, 1990, pp. 115-124.

[3] M. Paterson and F. Yao. Efficient Binary Space
Partitions for Hidden-Surface Removal and Solid
Modeling, Discrete and Computational Geometry,
Vol. 5, 1990, pp. 485-503.

[4] A. A. G. Requicha, R. B. Tilove. Mathematical
Foundations of Constructive Solid Geometry: Gen-
eral Topology of Closed Regular Sets, Technical

[5]

[6]

Memo 27, Production Automation Project, Univer-
sity of Rochester, Rochester, N.Y., 1978.

V. Shapiro, D. L. Vossler. Construction and Opti-
mization of CSG Representations, Computer Aided
Design, Vol. 23, No. 1, 1991, pp. 4-20.

W. Thibault and B. Naylor. Set Operations on
Polyhedra Using Binary Space Partitioning Trees,
Computer Graphics, Vol. 21, No. 4, 1987, pp. 153-
162.

